Abstract
The practical value of a criterion based on statistical information theory is demonstrated for the selection of optimal wavelength and bandwidth of low-cost lighting systems in plant imaging applications. Kullback–Leibler divergence is applied to the problem of spectral band reduction from hyperspectral imaging. The results are illustrated on various plant imaging problems and show similar results to the one obtained with state-of-the-art criteria. A specific interest of the proposed approach is to offer the possibility to integrate technological constraints in the optimization of the spectral bands selected.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Thenkabail, P.S., Lyon, J.G.: Huete: Hyperspectral Remote Sensing of Vegetation. CRC Press, Boca Raton (2011)
Bock, C.H., Poole, G.H., Parker, P.E., Gottwald, T.: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 29, 59–107 (2010)
Grahn, H., Geladi, P.: Techniques and Applications of Hyperspectral Image Analysis. Wiley, New York (2007)
Vigneau, N., Ecarnot, M., Rabatel, G., Roumet, P.: Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Res. 122, 25–31 (2011)
Behmann, J., Mahlein, A.K., Paulus, S., Kuhlmann, H., Oerke, E. C., Plumer, L.: Generation and application of hyperspectral 3D plant models. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) Computer Vision-ECCV 2014 Workshops. 70, 117–130. Springer, New York (2014)
Rousseau, D., Chéné, Y., Belin, E., Semaan, G., Trigui, G., Boudehri, K., Franconi, F., Chapeau-Blondeau, F.: Multiscale imaging of plants: current approaches and challenges. Plant Methods 11, 1–6 (2015)
Tsaftaris, S.A.: Noutsos: plant phenotyping with low cost digital cameras and image analytics. In: Athanasiadis, I.N., Rizzoli, A.E., Mitkas, P.A., Gómez, M.J. (eds.) Information Technologies in Environmental Engineering, pp. 238–251. Springer, Berlin (2009)
Kleynen, O., Leemans, V., Destain, M.-F.: Selection of the most efficient wavelength bands for Jonagold apple sorting. Postharvest Biol. Technol. 30, 221–232 (2003)
Piron, A., Leemans, V., Kleynen, O., Lebeau, F., Destain, M.-F.: Selection of the most efficient wavelength bands for discriminating weeds from crop. Comput. Electron. Agric. 62, 141–148 (2008)
Feyaerts, F., Van Gool, K.: Multi-spectral vision system for weed detection. Pattern Recognit. Lett. 22, 667–674 (2001)
Chao, K., Chen, Y., Hruschka, W., Park, B.: Chicken heart disease characterization by multi-spectral imaging. Appl. Eng. Agric. 17, 99–106 (2001)
Pal, M.: Margin-based feature selection for hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 11, 212–220 (2009)
Pal, M.: Multinomial logistic regression-based feature selection for hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 14, 214–220 (2012)
Guo, G., Gunn, S., Damper, R., Nelson, J.: Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3, 522–526 (2000)
De Backer, S., Kempeneers, P., Debruyn, W., Scheunders, P.: A band selection technique for spectral classification. IEEE Geosci. Remote Sens. Lett. 2, 319–323 (2005)
Nakauchi, S., Nishino, K., Yamashita, T.: Selection of optimal combinations of band-pass filters for ice detection by hyperspectral imaging. Opt. Express 20, 986–1000 (2012)
Richter, M., Beyerer, J.: Optical filter selection for automatic visual inspection. In: IEEE Winter Conference on Applications of Computer Vision (WACV) 5, 123–128 (2014)
Hansen, P.M., Schjoerring, J.K.: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86, 542–553 (2003)
Thenkabail, P.S., Smith, R.B., De Pauw, E.: Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogr. Eng. Remote Sens. 68, 607–622 (2002)
Fiorani, F., Rascher, U., Jahnke, S., Schurr, U.: Imaging plants dynamics in heterogenic environments. Curr. Opin. Biotechnol. 23, 227–235 (2012)
Wold, S., Ruhe, A., Wold, H., Dunn, I.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5, 735–743 (1984)
Osborne, S., Kunnemeyer, R., Jordan, R.: Method of wavelength selection for partial least squares. Analyst 122, 1531–1537 (1997)
Benoit, L., Belin, E., Rousseau, D., Chapeau-Blondeau, F.: Information-theoretic modeling of trichromacy coding of light spectrum. Fluct. Noise Lett. 13, 1–23 (2014)
Basseville, M.: Divergence measures for statistical data processing: an annotated bibliography. Signal Process. 93, 621–633 (2013)
Bowen, J.K., Mesarich, C.H., Bus, V.G., Beresford, R.M., Plummer, K.M.: Templeton: \({Venturia\, inaequalis}\): the causal agent of apple scab. Mol. Plant Pathol. 12, 105–122 (2011)
Oerke, E.C., Frohling, P., Steiner, U.: Thermographic assessment of scab disease on apple leaves. Precis. Agric. 12, 699–715 (2011)
Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin, E., Chapeau-Blondeau, F.: On the use of depth camera for 3D phenotyping of entire plants. Comput. Electron. Agric. 82, 122–127 (2012)
Belin, E., Rousseau, D., Boureau, T., Caffier, V.: Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab. Comput. Electron. Agric. 90, 159–163 (2013)
Delalieux, S., Auwerkerken, A., Verstraeten, W.W., Somers, B., Valcke, R., Lhermitte, S., Coppin, P.: Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves. Remote Sens. 1, 858–874 (2009)
Mahesh, S., Manickavasagan, A., Jayas, D.S., Paliwal, J., White, N.D.G.: Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst. Eng. 101, 50–57 (2008)
Mahesh, S., Jayas, D.S., Paliwal, J., White, N.D.G.: Identification of wheat classes at different moisture levels using near-infrared hyperspectral images of bulk samples. Sen. Instrum. Food Qual. Saf. 5, 1–9 (2011)
Manickavasagan, A., Jayas, D.S., White, N.D.G., Paliwal, J.: Wheat class identification using thermal imaging. Food Bioprocess Technol. 3, 450–460 (2010)
Forcella, F., Arnold, R.L.B., Sanchez, R., Ghersa, C.M.: Modeling seedling emergence. Field Crops Res. 67, 123–139 (2000)
Belin, E., Rousseau, D., Rojas-Varela, J., Demilly, D., Wagner, M.H., Cathala, M.H., Durr, C.: Thermography as non invasive functional imaging for monitoring seedling growth. Comput. Electron. Agric. 70, 236–240 (2011)
Benoit, L., Belin, E., Durr, C., Chapeau-Blondeau, F., Demilly, D., Ducournau, S., Rousseau, D.: Computer vision under inactinic light for hypocotyl radicle separation with a generic gravitropism-based criterion. Comput. Electron. Agric. 111, 12–17 (2015)
Murakami, Y., Obi, T., Yamaguchi, M., Ohyama, N., Komiya, Y.: Spectral reflectance estimation from multi-band image using color chart. Opt. Commun. 188, 47–54 (2001)
Hernández-Andrés, J., Nieves, J.I., Valero, E.M., Romero, J.: Spectral-daylight recovery by use of only a few sensors. J. Opt. Soc. Am. A 21, 13–23 (2004)
Cheung, V., Westland, S., Li, C., Hardeberg, J., Connah, D.: Characterization of trichromatic color cameras by using a new multispectral imaging technique. J. Opt. Soc. Am. A 22, 1231–1240 (2005)
Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 23–27 (1975)
Piron, A., Leemans, V., Kleynen, O., Lebeau, F., Destain, M.-F.: Selection of the most efficient wavelength bands for discriminating weeds from crop. Comput. Electron. Agric. 2, 141–148 (2008)
Acknowledgments
This work received support from the French Government supervised by the Agence Nationale de la Recherche in the framework of the program Investissements d’Avenir under reference ANR-11-BTBR-0007 (AKER program). Landry BENOIT gratefully acknowledges financial support from Angers Loire Metropole and GEVES-SNES for the preparation of his PhD.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Benoit, L., Benoit, R., Belin, É. et al. On the value of the Kullback–Leibler divergence for cost-effective spectral imaging of plants by optimal selection of wavebands. Machine Vision and Applications 27, 625–635 (2016). https://doi.org/10.1007/s00138-015-0717-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-015-0717-7