Skip to main content
Log in

Motion estimation using learning automata

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Block-matching algorithms (BMAs) are widely employed for motion estimation. BMAs divide input frames into several blocks and minimize an error function for each block to calculate motion vectors. Afterward, each motion vector is applicable for all of the pixels within the block. Since computing the error functions is resource intensive, many fast-search motion estimation algorithms have been suggested to reduce the computational cost. These fast algorithms provide a significant reduction in computation but often converge to a local minimum. A learning automaton is an adaptive decision-making unit that learns the optimal action through repeated interactions with its environment. Learning automata (LA) have been applied successfully to a wide range of applications including pattern recognition, dynamic channel assignment, and social network analysis. In this paper, we apply LA to motion estimation problem, which is one of the basic problems in computer vision. We compare the accuracy and performance of the suggested algorithms with other well-known BMAs. Interestingly, the obtained results indicate high efficiency and accuracy of the proposed methods. The results suggest that simplicity, efficiency, parallel nature, and accuracy of LA-based methods make them a good candidate to solve computer vision problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stuhlmüller, K., Färber, N., Link, M., Girod, B.: Analysis of video transmission over lossy channels. Sel. Areas Commun. IEEE J. 18(6), 1012–1032 (2000)

    Article  Google Scholar 

  2. Courtney, J.D.: Automatic video indexing via object motion analysis. Pattern Recognit. 30(4), 607–625 (1997)

    Article  Google Scholar 

  3. Zhang, H.J., Kankanhalli, A., Smoliar, S.W.: Automatic partitioning of full-motion video. Multimed. Syst. 1(1), 10–28 (1993)

    Article  Google Scholar 

  4. Koga, T.: Motion-compensated interframe coding for video conferencing. Proc. NTC 81, C9–6 (1981)

  5. Kratz, S., Ballagas, R.: Gesture recognition using motion estimation on mobile phones. In: Proceedings of 3rd International Workshop on Pervasive Mobile Interaction Devices (PERMID’07) (2007)

  6. Chua, C.-S., Guan, H., Ho, Y.-K.: Model-based 3d hand posture estimation from a single 2d image. Image Vis. Comput. 20(3), 191–202 (2002)

    Article  Google Scholar 

  7. Sarrut, D., Delhay, B., Villard, P.-F., Boldea, V., Beuve, M., Clarysse, P.: A comparison framework for breathing motion estimation methods from 4-d imaging. Med. Imag. IEEE Trans. 26(12), 1636–1648 (2007)

    Article  Google Scholar 

  8. Wang, Yao: Motion Estimation for Video Coding. Polytechnic University, Brooklyn (2003)

    Google Scholar 

  9. Yaakob, R., Aryanfar, A., Halin, A.A., Sulaiman, N.: A comparison of different block matching algorithms for motion estimation. Proc. Technol. 11, 199–205 (2013)

    Article  Google Scholar 

  10. Barjatya, A.: Block matching algorithms for motion estimation. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  11. Jong, H.-M., Chen, L.-G., Chiueh, T.-D.: Accuracy improvement and cost reduction of 3-step search block matching algorithm for video coding. Circuits Syst. Video Technol. IEEE Trans. 4(1), 88–90 (1994)

    Article  Google Scholar 

  12. Li, R., Zeng, B., Liou, Ming L.: A new three-step search algorithm for block motion estimation. Circuits Syst. Video Technol. IEEE Trans. 4(4), 438–442 (1994)

    Article  Google Scholar 

  13. Lu, J., Liou, M.L.: A simple and efficient search algorithm for block-matching motion estimation. Circuits Syst. Video Technol. IEEE Trans. 7(2), 429–433 (1997)

    Article  Google Scholar 

  14. Po, L.-M., Ma, W.-C.: A novel four-step search algorithm for fast block motion estimation. Circuits Syst. Video Technol. IEEE Trans. 6(3), 313–317 (1996)

    Article  Google Scholar 

  15. Zhu, S., Ma, Kai-Kuang: A new diamond search algorithm for fast block-matching motion estimation. Image Process. IEEE Trans. 9(2), 287–290 (2000)

    Article  MathSciNet  Google Scholar 

  16. Nie, Y., Ma, Kai-Kuang: Adaptive rood pattern search for fast block-matching motion estimation. Image Process. IEEE Trans. 11(12), 1442–1449 (2002)

  17. Liu, L.-K., Feig, Ephraim: A block-based gradient descent search algorithm for block motion estimation in video coding. Circuits Syst. Video Technol. IEEE Trans. 6(4), 419–422 (1996)

    Article  Google Scholar 

  18. Saha, A., Mukherjee, J., Sural, S.: A neighborhood elimination approach for block matching in motion estimation. Signal Process: Image Commun. 26(8), 438–454 (2011)

    Google Scholar 

  19. Cuevas, E., Zaldívar, D., Pérez-Cisneros, M., Oliva, D.: Block-matching algorithm based on differential evolution for motion estimation. Eng. Appl. Artif. Intell. 26(1), 488–498 (2013)

    Article  Google Scholar 

  20. Saha, A., Mukherjee, J., Sural, Shamik: New pixel-decimation patterns for block matching in motion estimation. Signal Process. Image Commun. 23(10), 725–738 (2008)

    Article  Google Scholar 

  21. Li, W., Salari, Ezzatollah: Successive elimination algorithm for motion estimation. Image Process. IEEE Trans. 4(1), 105–107 (1995)

    Article  Google Scholar 

  22. Chen, Y.-S., Hung, Y.-P., Fuh, C.-S.: Fast block matching algorithm based on the winner-update strategy. Image Process. IEEE Trans. 10(8), 1212–1222 (2001)

    Article  MATH  Google Scholar 

  23. Zahiri, S.-H.: Learning automata based classifier. Pattern Recognit. Lett. 29(1), 40–48 (2008)

    Article  Google Scholar 

  24. Sang, Q., Lin, Z., Acton, ST.: Learning automata for image segmentation. Pattern Recognit. Lett. 74, 46–52 (2016)

  25. Vahidipour, S.M., Meybodi, M.R., Esnaashari, M.: Learning automata-based adaptive petri net and its application to priority assignment in queuing systems with unknown parameters. IEEE Trans. Syst. Man Cybern. Syst. 45(10), 1373–1384 (2015)

  26. Rezvanian, A., Meybodi, MR.: A new learning automata-based sampling algorithm for social networks. Int. J. Commun. Syst. Wiley (2015). doi:10.1002/dac.3091

  27. Narendra, KS., Thathachar, MAL.: Learning Automata: An Introduction. Dover Publications, Inc. Mineola, New York (2012)

  28. Narendra, KS., Thathachar, MLAA.: Learning automata-a survey. Syst. Man Cybern. IEEE Trans. (4):323–334 (1974)

  29. Thathachar, M., Sastry, P.S.: Varieties of learning automata: an overview. Syst. Man Cybern. Part B: Cybern. IEEE Trans. 32(6), 711–722 (2002)

    Article  Google Scholar 

  30. Phansalkar, V.V., Thathachar, M.A.L.: Local and global optimization algorithms for generalized learning automata. Neural Comput. 7(5), 950–973 (1995)

    Article  Google Scholar 

  31. Thathachar, M.A.L., Sastry, P.S.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Springer, Berlin (2011)

    Google Scholar 

  32. Thathachar, MAL., Sastry, PS.: Estimator algorithms for learning automata. In: Proceedings of the Platinum Jubilee Conference on system Signal Processing, Department of Electrical Engineering, Indian Institute of Science, Bangalore, India, December 1986

  33. Oommen, B.J., Lanctôt, J.K.: Discretized pursuit learning automata. Syst. Man Cybern. IEEE Trans. 20(4), 931–938 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thathachar, M.L., Harita, B.R.: Learning automata with changing number of actions. Syst. Man Cybern. IEEE Trans. 17(6), 1095–1100 (1987)

    Article  Google Scholar 

  35. Lee, C.-H., Chen, L.-H.: A fast motion estimation algorithm based on the block sum pyramid. Image Process. IEEE Trans. 6(11), 1587–1591 (1997)

    Article  Google Scholar 

  36. Zhang, J.Q., Wang, C., Zhou, M.C.: Fast and epsilon-optimal discretized pursuit learning automata. Cybern. IEEE Trans. 45(10), 2089–2099 (2015)

    Article  Google Scholar 

  37. Yuan, X., Shen, X.: Block matching algorithm based on particle swarm optimization for motion estimation. In: Embedded Software and Systems, 2008. ICESS’08. International Conference on, pp. 191–195. IEEE (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Norouzzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damerchilu, B., Norouzzadeh, M.S. & Meybodi, M.R. Motion estimation using learning automata. Machine Vision and Applications 27, 1047–1061 (2016). https://doi.org/10.1007/s00138-016-0788-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-016-0788-0

Keywords

Navigation