Skip to main content
Log in

Shape automatic clustering-based multi-objective optimization with decomposition

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new shape automatic clustering method based on multi-objective optimization with decomposition (MOEA/D-SAC) is proposed, which aims to find the final cluster number k as well as an optimal clustering result for the shape datasets. Firstly, an improved shape descriptor based on the shape context is proposed to measure the distance between shapes. Secondly, the diffusion process is applied to transform the similarity distance matrix among total shapes of a dataset into a weighted graph, where the shapes and their distance are regarded as nodes and weight of edges, respectively. Thirdly, a new clustering method called “the soft clustering” is devised, starting with constructing an adjacency graph which can maintain the edges with the weights of k-nearest-neighbor nodes. Then, a multi-objective evolutionary algorithm with decomposition (MOEA/D) is applied to achieve automatic graph clustering scheme. The proposed clustering algorithm has been used to cluster several shape datasets, including four kimia datasets and a well-known MPEG-7 dataset, and experimental results show that the proposed method can demonstrate competitive clustering results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jain, A.K., Murty, R.C., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  3. Kaufman, L., Roussenw, P.: Finding Groups Data: Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)

    Article  Google Scholar 

  5. Lin, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 286–299 (2007)

    Article  Google Scholar 

  6. Bai, X., Latecki, L.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1282–1292 (2008)

    Article  Google Scholar 

  7. Handl, J., Knowles, J.: An evolutionary approach to multi-objective clustering. IEEE Trans. Evolut. Comput. 11, 56–76 (2007)

    Article  Google Scholar 

  8. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multi-objective genetic algorithm-based fuzzy clustering of categorical attributes. IEEE Trans. Evolut. Comput. 13, 991–1005 (2009)

    Article  Google Scholar 

  9. Tsai, C.W., Chen, W.L., Chiang, M.C.: A modified multi-objective EA-based clustering algorithm with automatic determination of the number of clusters. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2833 –2838 (2012)

  10. Blum, H.: Biological, shape and visual science. J. Theor. Biol. 38, 205–287 (1973)

    Article  Google Scholar 

  11. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26, 550–571 (2004)

    Article  Google Scholar 

  12. Srivastava, A., Joshi, S.H., Mio, W., Liu, Xiuwen: Statistical shape analysis: clustering, learning, and testing. IEEE Trans. Pattern Anal. Mach. Intell. 27, 590–602 (2005)

    Article  Google Scholar 

  13. Lakaemper, R., Zeng, J.: A context dependent distance measure for shape clustering. In: Proceedings of the ISVC (2008)

  14. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73, 307–324 (2007)

    Article  Google Scholar 

  15. Erdem, A., Torsello, A.: A game theoretic approach to learning shape categories and contextual similarities. In: Proceedings of the SSPR (2010)

  16. Shen, W., Wang, Y., Bai, X., Wang, H.Y., Latecki, L.J.: Shape clustering: common structure discovery. Pattern Recognit. 46, 539–550 (2013)

    Article  MATH  Google Scholar 

  17. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kontschieder, P., Donoser, M., Bischof, H.: Beyond pairwise shape similarity analysis. ACCV 2009(3), 655–666 (2009)

    Google Scholar 

  19. Kyrgyzov, I.O., Kyrgyzov, O.O., Maitre, H., Campedel, M.: Kernel MDL: To determine the number of clusters. In: International Conference on Machine Learning and Data Mining (MLDM), Leipzig, Germany (2007)

  20. Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)

    Article  MATH  Google Scholar 

  21. Daliri, M.R., Torre, V.: Shape and texture clustering: Best estimate for the clusters number. Image Vis. Comput. 27(10), 1603–1614 (2009)

    Article  Google Scholar 

  22. Das, S., Abraham, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 38, 218–237 (2008)

    Article  Google Scholar 

  23. Yang, X.W., Tezel, S.K., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: CVPR (2009)

  24. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and delaunay triangulator. Appl. Comput. Geom.: Towards Geom. Eng. 1148, 203–222 (1996)

    Google Scholar 

  25. Xu, M.H., Liu, Y.Q.: An improved Dijkstra’s shortest path algorithm for sparse network. Appl. Math. Comput. 185(1), 247–254 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Ling, H.B., Yang, X.W., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: Processing of ECCV, pp. 411–424 (2010)

  27. Bai, X., Yang, X.W., Latecki, L.J., Liu, W.Y., Tu, Z.W.: Learning context-sensitive shape similarity by graph transduction. IEEE Trans. Pattern Anal. Mach. Intell. 32, 861–874 (2010)

    Article  Google Scholar 

  28. Donoser, M., Bischof, H.: Diffusion process for retrieval revisited. In: Proceedings of CVPR (2013)

  29. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 6, 712–731 (2007)

    Article  Google Scholar 

  30. Angelini, L., Boccaletti, S., Marinazzo, D., Pellicoro, M., Stramaglia, S.: Identification of network modules by optimization of ratio association. Chaos 17(2), 023–114 (2007)

    Article  MATH  Google Scholar 

  31. Li, H., Zhang, Q.: Multi-objective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  32. Sivri, E., Kalkan, S.: Global binary patterns: a novel shape descriptor. In: Proceedings of International Conference on Machine Vision Applications, pp. 168–172 (2013)

  33. Jeannin, S., Bober, M.: Description of core experiments for MPEG7 motion/shape. In: Technical Report ISO/IEC JTC 1/SC 29/WG 11 MPEG99/N2690, MPEG-7, Seoul (1999)

  34. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recognit. 33, 1455–1465 (2000)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61373111), the Fundamental Research Funds for the Central University (Nos. K50511020014, K5051302084) and the Provincial Natural Science Foundation of Shaanxi of China (No. 2014JM8321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruochen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wang, R., Yu, X. et al. Shape automatic clustering-based multi-objective optimization with decomposition. Machine Vision and Applications 28, 497–508 (2017). https://doi.org/10.1007/s00138-017-0850-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0850-6

Keywords

Navigation