Abstract
A novel specular highlights detection method in colonoscopy videos is presented. The method is based on a model of appearance defining specular highlights as bright spots which are highly contrasted with respect to adjacent regions. Our approach proposes two stages: segmentation and then classification of bright spot regions. The former defines a set of candidate regions obtained through a region growing process with local maxima as initial region seeds. This process creates a tree structure which keeps track, at each growing iteration, of the region frontier contrast; final regions provided depend on restrictions over contrast value. Non-specular regions are filtered through a classification stage performed by a linear SVM classifier using model-based features from each region. We introduce a new validation database with more than 25, 000 regions along with their corresponding pixel-wise annotations. We perform a comparative study against other approaches. Results show that our method is superior to other approaches, with our segmented regions being closer to actual specular regions in the image. Finally, we also present how our methodology can also be used to obtain an accurate prediction of polyp histology.












Similar content being viewed by others
References
Alsaleh, S.M., Aviles, A.I., Sobrevilla, P., Casals, A., Hahn, J.K.: Adaptive segmentation and mask-specific sobolev inpainting of specular highlights for endoscopic images. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, pp. 1196–1199. IEEE (2016)
Angelopoulou, E.: Specular highlight detection based on the fresnel reflection coefficient. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp. 1–8. IEEE (2007)
Arnold, M., Ghosh, A., Ameling, S., Lacey, G.: Automatic segmentation and inpainting of specular highlights for endoscopic imaging. J. Image Video Process. 2010, 9 (2010)
Asundi, A., Wensen, Z.: Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill. Appl. Opt. 37(23), 5416–5420 (1998)
Bernal, J., Gil, D., Sánchez, C., Sánchez, F.J.: Discarding non informative regions for efficient colonoscopy image analysis. In: International Workshop on Computer-Assisted and Robotic Endoscopy, pp. 1–10. Springer (2014)
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)
Bernal, J., Sánchez, F.J., Rodríguez de Miguel, C., Fernández-Esparrach, G.: Screening for Colorectal Cancer with Colonoscopy, vol. 1, chap. In: Building up the Future of Colonoscopy—A Synergy between Clinicians and Computer Scientists, pp. 109–141. InTech (2015)
Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 45(9), 3166–3182 (2012)
Bernal, J., Sánchez, J., Vilarino, F.: Impact of image preprocessing methods on polyp localization in colonoscopy frames. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 7350–7354. IEEE (2013)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
Fernández-Esparrach, G., Bernal, J., López-Cerón, M., Córdova, H., Sánchez-Montes, C., de Miguel, C.R., Sánchez, F.J.: Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy 48(09), 837–842 (2016)
Hafner, M., Brunauer, L., Payer, H., Resch, R., Gangl, A., Uhl, A., Wrba, F., Vécsei, A.: Computer-aided classification of zoom-endoscopical images using fourier filters. IEEE Trans. Inf. Technol. Biomed. 14(4), 958–970 (2010)
Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Int. Syst. Appl. 13(4), 18–28 (1998)
Iakovidis, D.K., Koulaouzidis, A.: Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12(3), 172–186 (2015)
Kudo, S.E., Wakamura, K., Ikehara, N., Mori, Y., Inoue, H., Hamatani, S.: Diagnosis of colorectal lesions with a novel endocytoscopic classification–a pilot study. Endoscopy 43(10), 869–875 (2011)
Linker, R., Kelman, E.: Apple detection in nighttime tree images using the geometry of light patches around highlights. Comput. Electr. Agric. 114, 154–162 (2015)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)
Meziou, L., Histace, A., Precioso, F.: Alpha-divergence maximization for statistical region-based active contour segmentation with non-parametric pdf estimations. In: Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pp. 861–864. IEEE (2012)
Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. Comput. Vis. ECCV 2008, 183–196 (2008)
Núñez, J.M., Bernal, J., Ferrer, M., Vilariño, F.: Impact of keypoint detection on graph-based characterization of blood vessels in colonoscopy videos. In: International Workshop on Computer-Assisted and Robotic Endoscopy, pp. 22–33. Springer (2014)
Shao, F., Jiang, G., Yu, M., Ho, Y.S.: Highlight-detection-based color correction method for multiview images. ETRI J. 31(4), 448–450 (2009)
Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)
Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imag. 35(2), 630–644 (2016)
Tan, R.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 178–193 (2005)
Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993)
Xu, S.C., Ye, X., Wu, Y., Zhang, S.: Highlight detection and removal based on chromaticity. In: Image Analysis and Recognition, pp. 199–206. Springer (2005)
Yang, Q., Wang, S., Ahuja, N.: Real-time specular highlight removal using bilateral filtering. Comput. Vis. ECCV 2010, 87–100 (2010)
Yoon, K., Kweon, I.: Correspondence search in the presence of specular highlights using specular-free two-band images. Comput. Vis. ACCV 2006, 761–770 (2006)
Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., Kikinis, R.: Statistical validation of image segmentation quality based on a spatial overlap index 1: scientific reports. Acad. Radiol. 11(2), 178–189 (2004)
Acknowledgements
This work was supported by the Spanish Government through the funded project iVENDIS (DPI2015-65286-R), by the FSEED, by the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya, 2014-SGR-1470 and 2014-SGR-135 and by CERCA Programme / Generalitat de Catalunya.
Author information
Authors and Affiliations
Corresponding author
Appendix: Bright spot regions segmentation algorithms
Appendix: Bright spot regions segmentation algorithms





Rights and permissions
About this article
Cite this article
Sánchez, F.J., Bernal, J., Sánchez-Montes, C. et al. Bright spot regions segmentation and classification for specular highlights detection in colonoscopy videos. Machine Vision and Applications 28, 917–936 (2017). https://doi.org/10.1007/s00138-017-0864-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-017-0864-0