Skip to main content
Log in

Multi-focal nematode image stack classification using a projection-based multi-linear method

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In digital multi-focal images (DMIs), morphological and topological information for a transparent specimen can be captured in the form of a stack of high-quality images. We propose to use projection methods such as coefficient of variation projection to exploit the entire information of a given DMI stack using its projection images from different directions. Besides, multiple features extracted from the projection images along different directions are combined by using canonical correlation analysis. Because DMI stacks represent the effect of different factors—texture, the directions of projection, different instances within the same class and different classes of objects, we embed the projection method within a multi-linear analysis framework to propose a multiple direction projection-based multi-linear classification approach. The experimental results on the nematode data show that our proposed classifier can achieve very reliable recognition rate (98.5%) on a real-life database, even we only use the texture feature instead of the combination of texture and shape features as in a previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Ley, P., Bert, W.: Video capture and editing as a tool for the storage, distribution, and illustration of morphological characters of nematodes. J. Nematol. 34(4), 296–302 (2002)

    Google Scholar 

  2. Shen, F.M., Shen, C.H., Zhou, X., Yang, Y., Shen, H.T.: Face image classification by pooling raw features. Pattern Recognit. 54, 94–103 (2016)

    Article  Google Scholar 

  3. Li, W., Tramel, E.W., Prasad, S., Fowler, J.E.: Nearest regularized subspace for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 52(1), 477–489 (2014)

    Article  Google Scholar 

  4. Li, W., Du, Q.: Gabor-filtering-based nearest regularized subspace for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(4), 1012–1022 (2014)

  5. Yan, T., Liu, Q., Wei, Q., Chen, F., Deng, T.: Classification of lymphoma cell image based on improved SVM. In: Zhang, T.-C., Nakajima, M. (eds.) Advances in Applied Biotechnology. LNEE, vol. 332, pp. 199–208. Springer, Heidelberg (2015)

    Google Scholar 

  6. Guo, H., Wang, W.: An active learning-based SVM multi-class classification model. Pattern Recognit. 48(5), 1577–1597 (2015)

    Article  MATH  Google Scholar 

  7. Gu, S., Zhang, L., Zuo, W., Feng, X.: Projective dictionary pair learning for pattern classification. In: Advances in Neural Information Processing Systems (NIPS), pp. 793–801 (2014)

  8. Liu, M., Wei, Y.L., Qian, W.L.: Robust plant cell tracking in noisy image sequences using CRF graph matching. IEEE Signal Proc. Lett. 24(8), 1168–1172 (2017)

    Article  Google Scholar 

  9. Liu, M., Xiang, P., Liu, G.C.: Robust plant cell tracking using local spatio-temporal context. Neurcomputing 208(10), 309–314 (2016)

    Article  Google Scholar 

  10. Klaser, A., Marcin, M., Cordelia, S.: A spatio-temporal descriptor based on 3d-gradients. In: British Machine Vision Conference, pp. 275–285 (2008)

  11. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: ACM International Conference on Multimedia, pp. 357–360 (2007)

  12. Holte, M.B., Chakraborty, B., Gonzalez, J., Moeslund, T.B.: A local 3-D motion descriptor for multi-view human action recognition from 4-D spatio-temporal interest points. IEEE J. Signal Process. 6(5), 553–565 (2012)

    Google Scholar 

  13. Chakraborty, B., Holte, M.B., Moeslund, T.B., Gonzalez, J., Xavier Roca, F.: A selective spatio-temporal interest point detector for human action recognition in complex scenes. In: Proceedings of the IEEE Conference on Computer Vision, pp. 1776–1783 (2011)

  14. Yuan, C., Li, X., Hu, W., Ling, H., Stephen, M.: 3D R transform on spatio temporal interest points for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–730 (2013)

  15. Liu, M., Roy-Chowdhury, A.K., Yoder, M., De Ley, P.: Multi-focal nematode image classification using the 3D X-Ray Transform. In: IEEE International Conference on Image Processing, pp. 269–272 (2010)

  16. Liu, M., Roy-Chowdhury, A.K.: Multilinear feature extraction and classification of multi-focal images, with applications in nematode taxonomy. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2823–2830 (2010)

  17. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear sub-space analysis of image ensembles. Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, 93–99 (2003)

    Google Scholar 

  18. Hao, Z., He, L., Chen, B., Yang, X.: A linear support higher-order tensor machine for classification. IEEE Trans. Image Process. 22(7), 2911–2920 (2013)

    Article  Google Scholar 

  19. Li, Q., Schonfeld, D.: Multilinear discriminant analysis for higher-order tensor data classification. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2524–2537 (2014)

    Article  Google Scholar 

  20. Takallou, H.M., Kasaei, S.: Multiview face recognition based on multilinear decomposition and pose manifold. IEEE Trans. Image Process. 8(5), 300–309 (2014)

    Article  Google Scholar 

  21. Lajevardi, S.M., Wu, H.R.: Facial expression recognition in perceptual color space. IEEE Trans. Image Process. 21(8), 3721–3733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recognit. 40(3), 863–874 (2007)

    Article  MATH  Google Scholar 

  23. Wang, H.: Structural two-dimensional principal component analysis for image recognition. Mach. Vis. Appl. 22(2), 433–438 (2011)

    Article  Google Scholar 

  24. Luo, D., Huang, H., Ding, C.: Discriminative high order SVD: adaptive tensor subspace selection for image classification, clustering, and retrieval. In: IEEE Conference on Computer Vision, pp. 1443–1448 (2011)

  25. Duchenne, O., Bach, F., Kweon, I.-S., Ponce, J.: A tensor-based algorithm for high-order graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2383–2395 (2011)

    Article  Google Scholar 

  26. Sansone, C., Paduano, V., Ceccarelli, M.: Combining 2d and 3d features to classify protein mutants in hela cells. In: El Gayar, N., Kittler, J., Roli, F. (eds.) Multiple Classifier Systems. LNCS, vol. 5997, pp. 284–293. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Riley, K.C., Woodard, J.P., Hwang, G.M., Punyasena, S.W.: Progress towards establishing collection standards for semi-automated pollen classification in forensic geo-historical location applications. Rev. Palaeobot. Palynol. 221, 117–127 (2015)

    Article  Google Scholar 

  28. Selinummi, J., Ruusuvuori, P., Podolsky, I., Ozinsky, A., Gold, E., Yli-Harja, O., Aderem, A., Shmulevich, I.: Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images. PLoS ONE 4(10), e7497 (2009)

    Article  Google Scholar 

  29. Pertuz, S., Puig, D., Garcia, M.A., Fusiello, A.: Generation of all-in-focus images by noise-robust selective fusion of limited depth-of-field images. IEEE Trans. Image Process. 22(3), 1242–1251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, Q., Zeng, S., Liu, Y., Heng, P., Xia, D.S.: A new method of feature fusion and its application in image recognition. Pattern Recognit. 38(12), 2437–2448 (2005)

    Article  Google Scholar 

  31. Yang, J., Zhang, X.: Feature-level fusion of fingerprint and finger-vein for personal identification. Pattern Recognit. Lett. 33(5), 623–628 (2012)

    Article  Google Scholar 

  32. Zhuang, X., Bai, W., Song, J., Zhan, S., Qian, X., Shi, W., Lian, Y.: Rueckert, Daniel: Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. Med. Phys. 42(7), 3822–3833 (2015)

    Article  Google Scholar 

  33. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 806–813 (2014)

  34. Kumar, A., Kim, J., Lyndon, D., Fulham, M., Feng, D.: An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J. Biomed. Health Inform. 21(1), 31–40 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Amit Roy-Chowdhury from the Department of Electrical Engineering at the University of California, Riverside, for offering insightful suggestions on building the proposed classification framework. We gratefully acknowledge Prof. Paul De Ley from the College of Natural and Agricultural Sciences at the University of California, Riverside, for providing us the datasets on which results are shown. This work was supported by the National Natural Science Foundation of China under Grant 61301254 and 61771189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, X., Liu, K. et al. Multi-focal nematode image stack classification using a projection-based multi-linear method. Machine Vision and Applications 29, 135–144 (2018). https://doi.org/10.1007/s00138-017-0881-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0881-z

Keywords

Navigation