Abstract
Hyperspectral imaging provides more information than conventional RGB images. However, its high dimensionality prevents its adaptation to the existing image processing techniques. Defining full-band spectral feature is the first missing step, which is currently dealt with indirectly by band selection or dimension reduction. This article proposes a spectral feature extraction method using the mathematical moments to quantify the shape of the reflectance spectrum from different aspects. A whole family of features is presented by changing the moment attributes. All the features and their combinations are extensively tested in texture analysis of a new hyperspectral image database from textile samples (SpecTex). Two supervised experiments are performed: image patch classification and pixel-wise mosaic image segmentation. The proposed features are compared to four other features: the grayscale intensity, the RGB and CIELab values, and the principal components. Also, three analysis methods are tested: co-occurrence matrix, Gabor filter bank, and local binary pattern. In all cases, the moment features outperformed the opponents. Notably, combining the moment features with complementary attributes remarkably improved the performance. The most discriminative combinations are studied and formulated in this article.

















Similar content being viewed by others
References
Safia, A., He, D.-C.: Multiband compact texture unit descriptor for intra-band and inter-band texture analysis. ISPRS J. Photogramm. Remote Sens. 105, 169–185 (2015)
Li, W., Chen, C., Su, H., Du, Q.: Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3681–3693 (2015)
Brusco, N., Capeleto, S., Fedel, M., Paviotti, A., Poletto, L., Cortelazzo, G.M., Tondello, G.: A system for 3d modeling frescoed historical buildings with multispectral texture information. Mach. Vis. Appl. 17(6), 373–393 (2006)
Pan, Z., Healey, G., Prasad, M., Tromberg, B.: Face recognition in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003)
Bouatmane, S., Roula, M.A., Bouridane, A., Al-Maadeed, S.: Round-Robin sequential forward selection algorithm for prostate cancer classification and diagnosis using multispectral imagery. Mach. Vis. Appl. 22(5), 865–878 (2011)
Eckhard, T., Klammer, M., Valero, E.M., Hernández-Andrés, J.: Improved spectral density measurement from estimated reflectance data with kernel ridge regression. In: Image and Signal Processing, ser. Lecture Notes in Computer Science, pp. 79–86. Springer International Publishing (2014)
Porebski, A., Vandenbroucke, N., Macaire, L.: Haralick feature extraction from LBP images for color texture classification. In: First Workshops on Image Processing Theory, Tools and Application, IPTA 2008, pp. 1–8 (2008)
Khelifi, R., Adel, M., Bourennane, S.: Multispectral texture characterization: application to computer aided diagnosis on prostatic tissue images. EURASIP J. Adv. Signal Process. 2012(1), 118 (2012)
Hauta-Kasari, M., Parkkinen, J., Jaaskelainen, T., Lenz, R.: Multi-spectral texture segmentation based on the spectral cooccurrence matrix. Pattern Anal. Appl. 2(4), 275–284 (1999)
Münzenmayer, C., Volk, H., Küblbeck, C., Spinnler, K., Wittenberg, T.: Multispectral texture analysis using interplane sum-and difference-histograms. In: Joint Pattern Recognition Symposium. Springer, Berlin, Heidelberg, pp. 42–49 (2002)
Ledoux, A., Losson, O., Macaire, L.: Color local binary patterns: compact descriptors for texture classification. J. Electron. Imaging 25(6), 061 404–061 404 (2016)
Zhao, W., Du, S.: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54(8), 4544–4554 (2016)
Xu, L., Wong, A., Li, F., Clausi, D.A.: Intrinsic representation of hyperspectral imagery for unsupervised feature extraction. IEEE Trans. Geosci. Remote Sens. 54(2), 1118–1130 (2016)
Puetz, A.M., Olsen, R.C.: Haralick texture features expanded into the spectral domain. In: Defense and Security Symposium. International Society for Optics and Photonics, 623311 (2006)
Nouri, D., Lucas, Y., Treuillet, S.: Hyperspectral interventional imaging for enhanced tissue visualization and discrimination combining band selection methods. Int. J. Comput. Assist. Radiol. Surg. 11(12), 2185–2197 (2016)
Sharma, V., Van Gool, L.: Image-level classification in hyperspectral images using feature descriptors, with application to face recognition. arXiv:1605.03428 (2016)
Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley, New York (2009)
Zhang, L., Zhang, L., Tao, D., Huang, X.: On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50(3), 879–893 (2012)
Sinha, A., Banerji, S., Liu, C.: New color GPHOG descriptors for object and scene image classification. Mach. Vis. Appl. 25(2), 361–375 (2014)
Mirmehdi, M., Xie, X., Suri, J.: Handbook of Texture Analysis. Imperial College Press, London (2008)
Petrou, M., Sevilla, P.: Image Processing: Dealing with Texture. Wiley, New York (2006)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3(6), 610–621 (1973)
Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24(12), 1167–1186 (1991)
Mäenpää, T.: The Local Binary Pattern Approach to Texture Analysis: Extensions and Applications. Oulun yliopisto, Oulu (2003)
Kumar, B., Dikshit, O.: Spectral-spatial classification of hyperspectral imagery based on moment invariants. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 8(6), 2457–2463 (2015)
Mirzapour, F., Ghassemian, H.: Moment-based feature extraction from high spatial resolution hyperspectral images. Int. J. Remote Sens. 37(6), 1349–1361 (2016)
Zhang, Y., Wirkert, S.J., Iszatt, J., Kenngott, H., Wagner, M., Mayer, B., Stock, C., Clancy, N.T., Elson, D.S., Maier-Hein, L.: Tissue classification for laparoscopic image understanding based on multispectral texture analysis. In: SPIE Medical Imaging. International Society for Optics and Photonics, p. 978619 (2016)
Kohonen, O.: Retrieval of Databased Spectral Images. Joensuu yliopistopaino, Joensuu (2007)
SpecTex database. [Online]. https://www.uef.fi/web/spectral/spectex
Barra, V.: Expanding the local binary pattern to multispectral images using total orderings. In: International Conference on Computer Vision, Imaging and Computer Graphics. Springer, pp. 67–80 (2010)
Song, C., Li, P., Yang, F.: Multivariate texture measured by Local binary pattern for multispectral image classification. IEEE Int. Conf. Geosci. Remote Sens. Symp. IGARSS 2006, 2145–2148 (2006)
Khelifi, R., Adel, M., Bourennane, S.: Segmentation of multispectral images based on band selection by including texture and mutual information. Biomed. Signal Process. Control 20, 16–23 (2015)
Ledoux, A., Richard, N., Capelle-Laizé, A.S., Deborah, H., Fernandez-Maloigne, C.: Toward a full-band texture features for spectral images. IEEE Int. Conf. Image Process. (ICIP) 2014, 708–712 (2014)
Deborah, H., Richard, N., Hardeberg, J.Y.: On the quality evaluation of spectral image processing algorithms. In: Tenth International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), 2014, pp. 133–140 (2014)
Deborah, H., Richard, N., Hardeberg, J.Y.: Spectral ordering assessment using spectral median filters. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Springer, pp. 387–397 (2015)
Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 254–266 (1996)
Flusser, J., Suk, T., Boldyš, J., Zitová, B.: Projection operators and moment invariants to image blurring. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 786–802 (2015)
Flusser, J., Suk, T., Zitova, B.: 2D and 3D Image Analysis by Moments. Wiley, New York (2016)
Mukundan, R., Ramakrishnan, K.R.: Moment Functions in Image Analysis: Theory and Applications. World Scientific, Singapore (1998)
Papakostas, G.A.: Moments and moment invariants: theory and applications. Science Gate 1, 3–32 (2014)
Bigun, J., du Buf, J.M.H.: N-folded symmetries by complex moments in Gabor space and their application to unsupervised texture segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 80–87 (1994)
Super, B.J., Bovik, A.C.: Shape from texture using local spectral moments. IEEE Trans. Pattern Anal. Mach. Intell. 17(4), 333–343 (1995)
Mäenpää, T., Pietikäinen, M., Viertola, J.: Separating color and pattern information for color texture discrimination. In: Proceedings of 16th International Conference on Pattern Recognition, 2002, pp. 668–671 (2002)
Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit. 62, 135–160 (2017)
Liu, L., Lao, S., Fieguth, P.W., Guo, Y., Wang, X., Pietikäinen, M.: Median robust extended local binary pattern for texture classification. IEEE Trans. Image Process. 25(3), 1368–1381 (2016)
Porebski, A., Vandenbroucke, N., Macaire, L., Hamad, D.: A new benchmark image test suite for evaluating colour texture classification schemes. Multimed. Tools Appl. 70(1), 543–556 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
This study was funded by the Finnish Funding Agency for Innovation (TEKES), funding decision 3268/31/2015.
Rights and permissions
About this article
Cite this article
Mirhashemi, A. Introducing spectral moment features in analyzing the SpecTex hyperspectral texture database. Machine Vision and Applications 29, 415–432 (2018). https://doi.org/10.1007/s00138-017-0892-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-017-0892-9