Abstract
Salient object detection is one of the most challenging areas in computer vision and has extensive applications in many fields. In this paper, two novel features, such as manifold ranking-based compactness and foreground connectivity, are designed in the proposed model. The new designed compactness is constructed by integrating two compactness maps which are, respectively, weighted by the spatial and central contrast of target region to all regions in the image. The foreground connectivity is obtained based on the novel compactness and geodesic distance. Since multiscale salient detections highlight different parts of the objects, we fuse four saliency maps on different scales to further improve the performance of the detection. Experiments on three public benchmark datasets demonstrate that the proposed method improves the accuracy of saliency detection and performs better than 14 state-of-the-art methods.









Similar content being viewed by others
References
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Judd, T., Ehinger, K., Ehinger, F., Durand, F., Torralba, A.: Learning to predict where humans look. In: 2009 IEEE International Conference on Computer Vision, pp. 2106–2113. Kyoto (2009)
Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: 2011 IEEE International Conference on Computer Vision, pp. 914–921. Barcelona (2011)
Pradeep, A., Subash, N.: Saliency tree: saliency detection method integrating diffusion-based compactness and local contrast. Int. J. Innov. Res. Comput. Commun. Eng. 3(10), 9778–9784 (2015)
Wang, L., Xue, J., Zheng, N., Hua, G.: Automatic salient object extraction with contextual cue. In: 2011 IEEE International Conference on Computer Vision, pp. 105–112. Barcelona (2011)
Lu, Y., Zhang, W., Lu, H., Xue, X.: Salient object detection using concavity context. In: 2011 IEEE International Conference on Computer Vision, pp. 233–240. Barcelona (2011)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., et al.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)
Cheng, M., Mitra, N.J., Huang, X., et al.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)
Yang, J., Yang, M.H.: Top-down visual saliency via joint crf and dictionary learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2296–2303. Providence (2012)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821. Columbus (2014)
Wang, Y., Peng, G., Zhou, M.: Saliency detection by hierarchically integrating compactness, contrast and boundary connectivity. Multimed. Tools Appl. 77(10), 11883–11901 (2018)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)
Achanta, R., Süsstrunk, S.: Saliency detection using maximum symmetric surround. In: 2010 International Conference on Image Processing, pp. 2653–2656. Hong Kong (2010)
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N.: Automatic salient object segmentation based on context and shape prior. In: 2011 British Machine Vision Conference, Dundee (2011)
Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual saliency detection by spatially weighted dissimilarity. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 473–480. Colorado (2011)
Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–740. Providence (2012)
Kim, J., Han, D., Tai, Y.W., Kim, J.: Salient region detection via high-dimensional color transform. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 883–890. Columbus (2014)
Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: Uniqueness, focusness and objectness. In: 2013 IEEE International Conference on Computer Vision, pp. 1976–1983. Sydney (2013)
Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: 2012 European Conference on Computer Vision, pp. 29–42. Firenze (2012)
Wang, J., Lu, H., Li, X., Tong, N., Liu, W.: Saliency detection via background and foreground seed selection. Neurocomputing 152, 359–368 (2015)
Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 FPS. In: 2015 IEEE International Conference on Computer Vision, pp. 1404–1412. Santiage (2015)
Tong, N., Lu, H., Zhang, Y., Ruan, X.: Salient object detection via global and local cues. Pattern Recogn. 48(10), 3258–3267 (2015)
Lu, H., Li, X., Zhang, L., Ruan, X., Yang, M.H.: Dense and sparse reconstruction error based saliency descriptor. IEEE Trans. Image Process. 25(4), 1592–1603 (2016)
Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090. Portland (2013)
Tong, N., Lu, H., Ruan, X., Yang, M.H.: Salient object detection via bootstrap learning. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1884–1892. Boston (2015)
Zhou, X., Liu, Z., Sun, G., Wang, X.: Improving saliency detection via multiple kernel boosting and adaptive fusion. IEEE Signal Process. Lett. 23(4), 517–521 (2016)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173. Portland (2013)
Zhou, L., Yang, Z., Yuan, Q., Zhou, Z., Hu, D.: Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans. Image Process. 24(11), 3308–3320 (2015)
Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.: Ranking on data manifolds. In: Proceedings of the 2003 Conference on Advances in Neural Information Processing Systems 16, pp. 169–176. The MIT Press, Cambridge (2004)
Achanta, R., Hemami, S., Estrada, F. et al.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. Miami (2009)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162. Portland (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Y., Peng, G. Salient object detection based on compactness and foreground connectivity. Machine Vision and Applications 29, 1143–1155 (2018). https://doi.org/10.1007/s00138-018-0958-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-018-0958-3