Skip to main content

Advertisement

Log in

Detection of abnormal behavior in narrow scene with perspective distortion

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Automatically and efficiently detecting abnormal events that occur in dynamic surveillance video is one of the important tasks in real-time video streaming analysis. However, in some typical application scenarios with narrow areas, the perspective distortion caused by the large depth-of-field has a tremendous negative impact on the accuracy of detection, thereby increasing the difficulty of identifying abnormal behavior. Taking the real-time violence occurring in the metro platform as an example, the article introduces a more effective algorithm for detecting abnormal behaviors in narrow areas with perspective distortion. The algorithm firstly uses the adaptive transformation mechanism to make up for the distorting effect in the region of interest extraction. Then, an improved pyramid L–K optical flow method with perspective weight and disorder coefficient is proposed to extract the abnormal behavior feature occurred in historical moving images. The side-by-side comparison of the experimental results proves that this algorithm can effectively compensate for the distortion effect and obviously improve the accuracy of abnormal behavior detection in narrow area scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Afsar, P., Cortez, P., Santos, H.: Automatic visual detection of human behavior: a review from 2000 to 2014. Expert Syst. Appl. 42(20), 6935–6956 (2015)

    Article  Google Scholar 

  2. Albiol, A.: Video analysis using corner motion statistics. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance—38 Tools Appl (2010)

  3. Beauchemin, S.S., Barron, J.L.: The Computation of Optical Flow. ACM, New York (1995)

    Book  Google Scholar 

  4. Bellamine, I, Tairi, H.: Motion detection using color structure-texture image decomposition. Intelligent Systems and Computer Vision (ISCV). IEEE, Fez, Morocco (2015). https://doi.org/10.1109/ISACV.2015.7105545

  5. Ben Mabrouk, A., Zagrouba, E.: Abnormal behavior recognition for intelligent video surveillance systems: a review. Expert Syst. Appl. 91, 480–491 (2018)

    Article  Google Scholar 

  6. Bermejo, E., Deniz, O., Bueno, G., Sukthankar, R.: Violence detection in video using computer vision techniques. In: CAIP’11 Proceedings of the 14th International Conference on Computer Analysis of Images and Patterns—Volume Part II, pp 332–339 (2011)

  7. Blunsden, S.: Detection and Classification of Multiple Person Interaction. University of Edinburgh, Edinburgh (2009)

    Google Scholar 

  8. Blunsden, S.J., Fisher, R.B.: The behave video dataset: ground truthed video for multi-person. Ann. BMVA 2010(4), 1–11 (2010)

    Google Scholar 

  9. Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker description of the algorithm. Opencv Doc. 22(2), 363–381 (2000)

    Google Scholar 

  10. Chan, A.B., Morrow, M., Vasconcelos, N.: Analysis of crowded scenes using holistic properties. In: 11th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2009), pp 1–8 (2009)

  11. Chen, M.Y., Mummert, L., Pillai, P., Hauptmann, A., Sukthankar, R.: Exploiting multi-level parallelism for low-latency activity recognition in streaming video. In: ACM Sigmm Conference on Multimedia Systems, pp 1–12 (2010)

  12. Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: A method for counting people in crowded scenes. In: Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance, pp 225–232 (2010)

  13. Fang, Z., Fei, F., Fang, Y., Lee, C., Xiong, N., Shu, L., Chen, S.: Abnormal event detection in crowded scenes based on deep learning. Multimed. Tools Appl. 75(22), 14617–14639 (2016)

    Article  Google Scholar 

  14. Farabet, C., Couprie, C., Najman, L., Lecun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  15. Gao, Y., Liu, H., Sun, X., Liu, Y., Liu, Y.: Violence detection using oriented violent flows. Image Vis. Comput. 48–49(C), 37–41 (2016)

    Article  Google Scholar 

  16. Harris, C.: A combined corner and edge detector. Proc. Alvey Vis. Conf. 1988(3), 147–151 (1988)

    Google Scholar 

  17. Ko, K.E., Sim, K.B.: Deep convolutional framework for abnormal behavior detection in a smart surveillance system. Eng. Appl. Artif. Intell. 67, 226–234 (2018)

    Article  Google Scholar 

  18. Krausz, B., Bauckhage, C.: Loveparade 2010: automatic video analysis of a crowd disaster. Comput. Vis. Image Underst. 116(3), 307–319 (2012)

    Article  Google Scholar 

  19. Laptev, I., Lindeberg, T.: On space-time interest points. Int. J. Comput. Vis. 64(2), 107–123 (2005)

    Article  Google Scholar 

  20. Li, N., Wu, X., Xu, D., Guo, H., Feng, W.: Spatio-temporal context analysis within video volumes for anomalous-event detection and localization. Neurocomputing 155, 309–319 (2015a)

    Article  Google Scholar 

  21. Li, T., Chang, H., Wang, M., Ni, B., Hong, R., Yan, S.: Crowded scene analysis: a survey. IEEE Trans. Circuits Syst. Video Technol. 25(3), 367–386 (2015b)

    Article  Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  23. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2009, pp 935–942 (2009)

  24. Mohammadi, S., Perina, A., Kiani, H., Murino, V.: Angry crowds: detecting violent events in videos. In: European Conference on Computer Vision, pp 3–18 (2016)

  25. Mousavi, H., Mohammadi, S., Perina, A., Chellali, R.: Analyzing tracklets for the detection of abnormal crowd behavior. In: IEEE Winter Conference on Applications of Computer Vision, pp 148–155 (2015)

  26. Mousavi, H., Galoogahi, H.K., Perina, A., Murino, V.: Detecting Abnormal Behavioral Patterns in Crowd Scenarios. Springer, Berlin (2016)

    Book  Google Scholar 

  27. Popoola, O.P., Wang, K.: Video-based abnormal human behavior recognition: a review. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 865–878 (2012)

    Article  Google Scholar 

  28. Rasheed, N., Khan, S.A., Khalid, A.: Tracking and abnormal behavior detection in video surveillance using optical flow and neural networks. In: International Conference on Advanced Information NETWORKING and Applications Workshops, pp 61–66 (2014)

  29. Rho, S., Rahayu, W., Nguyen, U.T.: Intelligent video surveillance in crowded scenes. Inf. Fusion 24, 1–2 (2015)

    Article  Google Scholar 

  30. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1891–1898 (2014)

  31. Valera, M., Velastin, S.: Intelligent distributed surveillance systems: a review. In: IEE Proceedings—Vision, Image and Signal Processing, pp 192–204 (2005)

  32. Wang, X., Gao, M., He, X., Wu, X., Li, Y.: An abnormal crowd behavior detection algorithm based on fluid mechanics. J. Comput. 9(5), 1144–1149 (2014)

    Google Scholar 

  33. Xu, D., Song, R., Wu, X., Li, N., Feng, W., Qian, H.: Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts. Neurocomputing 143, 144–152 (2014)

    Article  Google Scholar 

  34. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. In: British Machine Vision Conference, pp 1–12 (2015)

  35. Zabłocki, M., Go, K., Frejlichowski, D., Hofman, R.: Intelligent video surveillance systems for public spaces a survey. J. Theor. Appl. Comput. Sci. 8(4), 13–27 (2014)

    Google Scholar 

  36. Zhang, T., Yang, Z., Jia, W., Yang, B., Yang, J., He, X.: A new method for violence detection in surveillance scenes. Multimed. Tools Appl. 75(12), 7327–7349 (2016)

    Article  Google Scholar 

  37. Zhang, T., Jia, W., Yang, B., Yang, J., He, X., Zheng, Z.: Mowld: a robust motion image descriptor for violence detection. Multimed. Tools Appl. 76(1), 1419–1438 (2017)

    Article  Google Scholar 

  38. Zhang, Y., Qin, L., Ji, R., Yao, H., Huang, Q.: Social attribute-aware force model: exploiting richness of interaction for abnormal crowd detection. IEEE Trans. Circuits Syst. Video Technol. 25(7), 1231–1245 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wu.

Additional information

The work is supported by the National Natural Science Foundation of China (No. 61471252) and the Natural Science Foundation of Jiangsu Province (No. BK20130303)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wu, C., Wang, Y. et al. Detection of abnormal behavior in narrow scene with perspective distortion. Machine Vision and Applications 30, 987–998 (2019). https://doi.org/10.1007/s00138-018-0970-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0970-7

Keywords