Skip to main content
Log in

Small object segmentation with fully convolutional network based on overlapping domain decomposition

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We propose a new segmentation algorithm based on deep learning. To segment ice hockey players, a fully convolutional network (FCN) is adopted and fine-tuned with our augmented training data. The original FCN has difficulty segmenting small-size objects. To solve this problem, our method divides an input image into four overlapping sub-images and each image is fed into the deep learning network. After obtaining segmentation results from all sub-images, we combine them into a single result. The segmentation results should be consistent over time in video. Thus, our method tracks segments over time and removes false positives that appear for brief periods. Mathematically, we show that our overlapping subdivision process can be interpreted as overlapping domain decomposition methods, which enable the FCN to regularize over consecutive sub-images in training time. Experimental results demonstrate that our method accurately segments ice hockey players when they appear small and when there exists severe background clutter. Our method shows real-time performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhole, C., Pal, C.: Fully automatic person segmentation in unconstrained video using spatio-temporal conditional random fields. Image Vis. Comput. 51(7), 58–68 (2016)

    Article  Google Scholar 

  2. Chen, H.C., Chien, W.J., Wang, S.J.: Contrast-based color image segmentation. IEEE Signal Process. Lett. 11(7), 641–644 (2004)

    Article  Google Scholar 

  3. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: CoRR (2017). arXiv:abs/1706.05587

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected crf. In: ICLR (2015)

  5. Cheng, G., Han, J., Zhou, P., Xu, D.: Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE Trans. Image Process. 28(1), 265–278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, Y., Chang, H., Tai, X.C.: Convergent non-overlapping domain decomposition methods for variational image segmentation. J. Sci. Comput. 69(2), 532–555 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Firsov, D., Lui, S.H.: Domain decomposition methods in image denoising using Gaussian curvature. J. Comput. Appl. Math. 193(2), 460–473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fani, M., Neher, H., Clausi, D.A., Wong, A., Zelek, J.: Hockey action recognition via integrated stacked hourglass network. In: CVPRW (2017)

  9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  10. Fragkiadaki, K., Arbelaez, P., Felsen, P., Malik, J.: Learning to segment moving objects in videos. In: CVPR (2015)

  11. Hamaguchi, R., Fujita, A., Nemoto, K., Imaizumi, T., Hikosaka, S.: Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery. In: CoRR arXiv:abs/1709.00179 (2017)

  12. Han, J., Chen, H., Liu, N., Yan, C., Li, X.: CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion. IEEE Trans. Cybernet. 48(11), 3171–3183 (2018)

    Article  Google Scholar 

  13. Kampffmeyer, M., Salberg, A.B., Jenssen, R.: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: CVPRW (2016)

  14. Kim, W., Kim, M.: On-line detection and segmentation of sports motions using a wearable sensor. Sensors 18(3), 913 (2018)

    Article  Google Scholar 

  15. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. In: CVPR (2017)

  16. Li, Y., Tax, D.M., Loog, M.: Scale selection for supervised image segmentation. Image Vis. Comput. 30(12), 991–1003 (2012)

    Article  Google Scholar 

  17. Liu, W., Yan, C.C., Liu, J., Ma, H.: Deep learning based basketball video analysis for intelligent arena application. Multimedia Tools Appl. 76(23), 24983–25001 (2017)

    Article  Google Scholar 

  18. Liu, Z., Zhang, C., Tian, Y.: 3D-based deep convolutional neural network for action recognition with depth sequences. Image Vis. Comput. 55(2), 93–100 (2016)

    Article  Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

  20. Lu, X., Li, X.: Multiresolution imaging. IEEE Trans. Cybernet. 44(1), 149–160 (2014)

    Article  Google Scholar 

  21. Lu, X., Li, X., Mou, L.: Semi-supervised multitask learning for scene recognition. IEEE Trans. Cybernet. 45(9), 1967–1976 (2015)

    Article  Google Scholar 

  22. Lu, X., Wang, B., Zheng, X., Li, X.: Exploring models and data for remote sensing image caption generation. IEEE Trans. Geosci. Remote Sens. 56(4), 2183–2195 (2018)

    Article  Google Scholar 

  23. Lu, X., Wu, H., Yuan, Y.: Double constrained NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 52(5), 2746–2758 (2014)

    Article  Google Scholar 

  24. Lu, X., Zheng, X., Li, X.: Latent semantic minimal hashing for image retrieval. IEEE Trans. Image Process. 26(1), 355–368 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo, Z., Mishra, A., Achkar, A., Eichel, J., Li, S., Jodoin, P.M.: Non-local deep features for salient object detection. In: CVPR (2017)

  26. Mumford, D.B., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV (2015)

  28. Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple-target tracking problems. In: ICDC (2004)

  29. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV (2013)

  30. Papoutsakis, K.E., Argyros, A.A.: Integrating tracking with fine object segmentation. Image Vis. Comput. 31(10), 771–785 (2013)

    Article  Google Scholar 

  31. Reinbacher, C., Rther, M., Bischof, H.: Fast variational multi-view segmentation through backprojection of spatial constraints. Image Vis. Comput. 30(11), 797–807 (2012)

    Article  Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

  33. Tai, X.C., Xu, J.: Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comput. 71(237), 105–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tora, M.R., Chen, J., Little, J.J.: Classification of puck possession events in ice hockey. In: CVPR (2017)

  35. Xie, L., Xu, P., Chang, S.F., Divakaran, A., Sun, H.: Structure analysis of soccer video with domain knowledge and hidden markov models. Pattern Recognit. Lett. 25(7), 767775 (2004)

    Article  Google Scholar 

  36. Zagrouba, E., Gamra, S.B., Najjar, A.: Model-based graph-cut method for automatic flower segmentation with spatial constraints. Image Vis. Comput. 32(12), 1007–1020 (2014)

    Article  Google Scholar 

  37. Zhang, D., Han, J., Zhao, L., Meng, D.: Leveraging prior-knowledge for weakly supervised object detection under a collaborative self-paced curriculum learning framework. Int. J. Comput. Vis. 127, 1–18 (2018)

    Google Scholar 

  38. Zhang, W., Lu, X., Li, X.: A coarse-to-fine semi-supervised change detection for multispectral images. IEEE Trans. Geosci. Remote Sens. 56(6), 3587–3599 (2018)

    Article  Google Scholar 

  39. Zhao, X., Qu, Y., Zhang, H.: Sports video segmentation using spectral clustering. J. Multimedia 9(7), 873–878 (2014)

    Article  Google Scholar 

  40. Zhu, J., Liao, S., Lei, Z., Li, S.Z.: Multi-label convolutional neural network based pedestrian attribute classification. Image Vis. Comput. 58(2), 224–229 (2017)

    Article  Google Scholar 

  41. Zhu, J., Liao, S., Lei, Z., Li, S.Z.: Multi-label convolutional neural network based pedestrian attribute classification. Image Vis. Comput. 59(3), 31–43 (2017)

    Google Scholar 

  42. Zitnick, L., Dollar, P.: Edge boxes: Locating object proposals from edges. In: ECCV (2014)

Download references

Acknowledgements

This work was supported by ICT R&D program of MSIT / IITP [2017-0-00543] and partly supported by the Chung-Ang University Research Scholarship Grants in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kwon, D., Choi, B.W. et al. Small object segmentation with fully convolutional network based on overlapping domain decomposition. Machine Vision and Applications 30, 707–716 (2019). https://doi.org/10.1007/s00138-019-01023-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-019-01023-x

Keywords

Navigation