Skip to main content

Advertisement

Log in

Singular value decomposition-based virtual representation for face recognition

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In the field of face recognition, a key issue is whether there are a sufficient number of face training samples with valid information. Due to the complexity of human face images, face recognition is easy to be affected by the external environment such as light intensity, gesture expression, hairstyle, and occlusion. Therefore, it is difficult to obtain enough effective samples in practical applications. In this paper, we propose a new algorithm that generates virtual images by utilizing the information of the test sample via singular value decomposition. The virtual images not only extend the training sample set but also can better adapt to the test sample. In addition, we use the weighted score fusion scheme to calculate the ultimate result, which can better take advantages of data from different sources including original images and virtual images. Experimental results on the Extended Yale_B, AR, GT, ORL, and FERET face databases prove that our algorithm can obtain satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peng, Y., Li, L., Liu, S., Lei, T., Wu, J.: A new virtual samples-based CRC method for face recognition. Neural Process. Lett. 48, 313–327 (2018)

    Google Scholar 

  2. Liu, Z., Qiu, Y., Peng, Y., Pu, J., Zhang, X.: Quaternion based maximum margin criterion method for color face recognition. Neural Process. Lett. 45(3), 913–923 (2017)

    Google Scholar 

  3. Gong, C., Liu, T., Yang, J., Tao, D.: Large-margin label-calibrated support vector machines for positive and unlabeled learning. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2892403

    Article  Google Scholar 

  4. Du, B., Tang, X., Zhang, L., et al.: Robust graph-based semi-supervised learning for noisy labeled data via maximum correntropy criterion. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/tcyb.2018.2804326

    Article  Google Scholar 

  5. Xu, Y., Li, Z., Zhang, B.: Sample diversity, representation effectiveness and robust dictionary learning for face recognition. Inf. Sci. 375, 171–182 (2017)

    Google Scholar 

  6. Liu, S., Peng, Y., Ben, X., Yang, W., Qiu, G.: A novel label learning algorithm for face recognition. Sig. Process. 124, 141–146 (2016)

    Google Scholar 

  7. Xu, Y., Li, Z., Yang, J., Zhang, D.: A survey of dictionary learning algorithms for face recognition. IEEE Access 5, 8502–8514 (2019)

    Google Scholar 

  8. Liu, W., Liu, H., Tao, D., Wang, Y., Lu, K.: Multiview Hessian regularized logistic regression for action recognition. Sig. Process. 110, 101–107 (2015)

    Google Scholar 

  9. Peng, Y., Liu, S., Lei, T., Li, J., Guo, M.: Negative ε dragging technique for pattern classification. IEEE Access 6(1), 488–494 (2018)

    Google Scholar 

  10. Gong, C., Liu, T., Tang, Y., Yang, J., Yang, J., Tao, D.: A regularization approach for instance-based superset label learning. IEEE Trans. Cybern. 48(3), 967–978 (2017)

    Google Scholar 

  11. Peng, Y., Liu, S., Wang, X., Wu, X.: Local constraint and Fisher discriminative dictionary learning algorithm for image classification. Nuerocomputing (2019). https://doi.org/10.1016/j.neucom.2019.05.103

    Article  Google Scholar 

  12. Peng, Y., Li, L., Liu, S., Li, J., Wang, X.: Extended sparse representation based classification method for face recognition. Mach. Vis. Appl. 29(6), 991–1007 (2018)

    Google Scholar 

  13. Liu, S., Li, L., Peng, Y., Qiu, G., Lei, T.: Improved sparse representation method for image classification. IET Comput. Vis. 11(4), 319–330 (2017)

    Google Scholar 

  14. Xu, Y., Fan, Z., Qiu, M., Zhang, D., Yang, J.: A sparse representation method of bimodal biometrics and palmprint recognition experiments. Neurocomputing 103, 164–171 (2013)

    Google Scholar 

  15. Peng, Y., Li, L., Liu, S., Li, J.: Virtual samples and sparse representation based classification algorithm for face recognition. IET Comput. Vis. 13(2), 172–177 (2019)

    Google Scholar 

  16. Xu, Y., Zhang, D., Yang, J., Yang, J.: A two-phase test sample sparse representation method for use with face recognition. IEEE Trans. Circuits Syst. Video Technol. 21(9), 1255–1262 (2011)

    MathSciNet  Google Scholar 

  17. Peng, Y., Sehdev, P., Liu, S., Li, J., Wang, X.: l2,1-norm minimization based negative label relaxation linear regression for feature selection. Pattern Recognit. Lett. 116, 170–178 (2018)

    Google Scholar 

  18. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE International Conference on Computer Vision, 6–13 Nov. 2011, Barcelona, Spain, pp. 471–478

  19. Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)

    Google Scholar 

  20. Peng, Y., Zhang, L., Liu, S., Wang, X., Guo, M.: Kernel negative ε dragging linear regression for pattern classification. Complexity 2691474, 1–14 (2017)

    Google Scholar 

  21. Liu, W., Li, Y., Tao, D., Wang, Y.: A general framework for co-training and its applications. Neurocomputing 167, 112–121 (2015)

    Google Scholar 

  22. Poggio, T., Vetter, T.: Recognition and structure from one 2d model view: observations on prototypes, object classes and symmetries. Artificial Intelligence Laboratory, Massachusetts Institute of Technology. A.I. Memo no (1992)

  23. Beymer, D., Poggio, T.: Face recognition from one example view. In: Proceedings of the Fifth International Conference on Computer Vision, pp. 500–507 (1995)

  24. Ke, J., Peng, Y., Liu, S., Li, J., Pei, Z.: Face recognition based on symmetrical virtual image and original training image. J. Mod. Opt. 65(4), 367–380 (2018)

    MathSciNet  Google Scholar 

  25. Li, L., Peng, Y., Qiu, G., Sun, Z., Liu, S.: A survey of virtual sample generation technology for face recognition. Artif. Intell. Rev. 50(1), 1–20 (2018)

    Google Scholar 

  26. Liu, S., Zhang, X., Peng, Y., Cao, H.: Virtual images inspired consolidate collaborative representation based classification method for face recognition. J. Mod. Opt. 63(12), 1181–1188 (2016)

    Google Scholar 

  27. Xu, Y., Zhu, X., Li, Z., Liu, G., Lu, Y., Liu, H.: Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition. Pattern Recognit. 46, 1151–1158 (2013)

    Google Scholar 

  28. Ke, J., Peng, Y., Liu, S., Wu, J., Qiu, G.: Sample partition and grouped sparse representation. J. Mod. Opt. 64(21), 2289–2297 (2017)

    Google Scholar 

  29. Xu, Y., Fang, X., Yang, J., You, J., Liu, H., Teng, S.: Data uncertainty in face recognition. IEEE Trans. Cybern. 44(10), 1950–1961 (2014)

    Google Scholar 

  30. Xu, Y., Li, X., Yang, J., Zhang, D.: Integrate the original face image and its mirror image for face recognition. Neurocomputing 131, 191–199 (2014)

    Google Scholar 

  31. Peng, Y., Liu, S., Qian, Y., Wu, X., Hong, L.: A local mean and variance active contour model for biomedical image segmentation. Journal of Computational Science 33, 11–19 (2019)

    MathSciNet  Google Scholar 

  32. Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 995–1006 (2004)

    Google Scholar 

  33. Hou, F., Chen, J., Dong, G.: Weak fault feature extraction of rolling bearings based on globally optimized sparse coding and approximate SVD. Mech. Syst. Signal Process. 11, 234–250 (2018)

    Google Scholar 

  34. Hong, Z.Q.: Algebraic feature extraction of image for recognition. Pattern Recognit. 24(3), 211–219 (1991)

    MathSciNet  Google Scholar 

  35. Gong, C., Fu, K., Wu, Q., Tu, E., Yang, J.: Semi-supervised classification with pairwise constraints. Neurocomputing 139, 130–137 (2014)

    Google Scholar 

  36. Ke, J., Peng, Y., Liu, S., Sun, Z., Wang, X.: A novel grouped sparse representation for face recognition. Multimed. Tools Appl. 78(6), 7667–7689 (2019)

    Google Scholar 

  37. Peng, Y., Li, L., Liu, S., Wang, X., Li, J.: Weighted constraint dictionary learning algorithm for image classification. Pattern Recognit. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.09.008

    Article  Google Scholar 

  38. Xu, Y., Li, X., Yang, J., Lai, Z., Zhang, D.: Integrating conventional and inverse representation for face recognition. IEEE Trans. Cybern. 44(10), 1738–1746 (2013)

    Google Scholar 

  39. Peng, Y., Li, L., Liu, S., Lei, T.: Space-frequency domain based joint dictionary learning and collaborative representation for face recognition. Sig. Process. 147, 101–109 (2018)

    Google Scholar 

  40. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Google Scholar 

  41. Martinez, A.M.: The AR face database. CVC Technical Report 24 (1998)

  42. Goel, N., Bebis, G.: Face recognition experiments with random projection. Proc. SPIE Int. Soc. Opt. Eng. 5779, 426–437 (2005)

    Google Scholar 

  43. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: IEEE Workshop on Applications of Computer Vision, 5–7 Dec. 1994, Sarasota, FL, USA, pp. 138–142

  44. Phillips, P., Moon, H., Rauss, P., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Google Scholar 

  45. Liu, J., Chen, S., Tan, X.: Fractional order singular value decomposition representation for face recognition. Pattern Recognit. 41(1), 378–395 (2008)

    MATH  Google Scholar 

  46. Lu, J., Zhao, Y.: Dominant singular value decomposition representation for face recognition. Signal Process. 90(6), 2087–2093 (2010)

    MATH  Google Scholar 

  47. Tai, Y., Yang, J., Luo, L.: Learning discriminative singular value decomposition representation for face recognition. Pattern Recognit. 50(2), 1–16 (2016)

    Google Scholar 

  48. Li, X., Li, A., Bai, X.: 3D face detection and face recognition: state of the art and trends. In: International Conference on Image Processing and Pattern Recognition in Industrial Engineering, International Society for Optics and Photonics (2010)

  49. Zhang, K., Peng, Y., Liu, S.: Discriminative face recognition via kernel sparse representation. Multimed. Tools Appl. 77(24), 32243–32256 (2018)

    Google Scholar 

  50. Peng, Y., Ke, J., Liu, S., Li, J., Lei, T.: An improvement to linear regression classification for face recognition. Int. J. Mach. Learn. Cybern. 10(9), 2229–2243 (2019)

    Google Scholar 

  51. Gong, C., Tao, D., Maybank, S., Liu, W., Kang, G., Yang, J.: Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans. Image Process. 25(7), 3249–3260 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, X., Peng, Y., Liu, S., Wu, J., Ren, P.: A supervised dimensionality reduction method based sparse representation for face recognition. J. Modern Opt. 64(8), 799–806 (2017)

    Google Scholar 

  53. Xu, Y., Zhu, Q., Zhang, D.: Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments. Neurocomputing 74(18), 3946–3952 (2011)

    Google Scholar 

  54. Liu, S., Li, L., Jin, M., Hou, S., Peng, Y.: An optimized coefficient vector and representation based classification methods for face recognition. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2960928

    Article  Google Scholar 

  55. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 83–202 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Liu, Z., Pu, J., Huang, T., Qiu, Y.: A novel classification method for palmprint recognition based on reconstruction error and normalized distance. Appl. Intell. 39(2), 307–314 (2013)

    Google Scholar 

  57. Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Fast ℓ1-minimization algorithms and an application in robust face recognition: a review. In: IEEE International Conference on Image Processing, 26–29 September 2010, Hong Kong, pp. 1849–1852

  58. Xu, Y., Zhu, Q., Chen, Y., Pan, J.: An improvement to the nearest neighbor classifier and face recognition experiments. J. Innov. Comput. Inf. Control 9(2), 543–554 (2013)

    Google Scholar 

  59. Belhumeur, N.P., Hespanha, J.P., David, J.K.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key R&D Program of China (No. 2017YFB1402102), the National Natural Science Foundation of China (Nos. 61873155, 61672333, 61703096, 11772178), the National Natural Science Foundation of Shaanxi Province (No. 2018JM6050), Transfer and Promotion Plan of Scientific and Technological Achievements of Shaanxi Province (No. 2019CGXNG-019), Innovation Chain of Key Industries of Shaanxi Province (No. 2019ZDLSF07-01), the Key Science and Technology Program of Shaanxi Province, China (No. 2016GY-081), the Fundamental Research Funds for the Central Universities (No. GK201803088), and the Ministry of Education Cooperation in Production and Education (No. 201701023062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, Y., Peng, Y. et al. Singular value decomposition-based virtual representation for face recognition. Machine Vision and Applications 31, 19 (2020). https://doi.org/10.1007/s00138-020-01067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01067-4

Keywords