Abstract
In the field of face recognition, a key issue is whether there are a sufficient number of face training samples with valid information. Due to the complexity of human face images, face recognition is easy to be affected by the external environment such as light intensity, gesture expression, hairstyle, and occlusion. Therefore, it is difficult to obtain enough effective samples in practical applications. In this paper, we propose a new algorithm that generates virtual images by utilizing the information of the test sample via singular value decomposition. The virtual images not only extend the training sample set but also can better adapt to the test sample. In addition, we use the weighted score fusion scheme to calculate the ultimate result, which can better take advantages of data from different sources including original images and virtual images. Experimental results on the Extended Yale_B, AR, GT, ORL, and FERET face databases prove that our algorithm can obtain satisfactory performance.





Similar content being viewed by others
References
Peng, Y., Li, L., Liu, S., Lei, T., Wu, J.: A new virtual samples-based CRC method for face recognition. Neural Process. Lett. 48, 313–327 (2018)
Liu, Z., Qiu, Y., Peng, Y., Pu, J., Zhang, X.: Quaternion based maximum margin criterion method for color face recognition. Neural Process. Lett. 45(3), 913–923 (2017)
Gong, C., Liu, T., Yang, J., Tao, D.: Large-margin label-calibrated support vector machines for positive and unlabeled learning. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2892403
Du, B., Tang, X., Zhang, L., et al.: Robust graph-based semi-supervised learning for noisy labeled data via maximum correntropy criterion. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/tcyb.2018.2804326
Xu, Y., Li, Z., Zhang, B.: Sample diversity, representation effectiveness and robust dictionary learning for face recognition. Inf. Sci. 375, 171–182 (2017)
Liu, S., Peng, Y., Ben, X., Yang, W., Qiu, G.: A novel label learning algorithm for face recognition. Sig. Process. 124, 141–146 (2016)
Xu, Y., Li, Z., Yang, J., Zhang, D.: A survey of dictionary learning algorithms for face recognition. IEEE Access 5, 8502–8514 (2019)
Liu, W., Liu, H., Tao, D., Wang, Y., Lu, K.: Multiview Hessian regularized logistic regression for action recognition. Sig. Process. 110, 101–107 (2015)
Peng, Y., Liu, S., Lei, T., Li, J., Guo, M.: Negative ε dragging technique for pattern classification. IEEE Access 6(1), 488–494 (2018)
Gong, C., Liu, T., Tang, Y., Yang, J., Yang, J., Tao, D.: A regularization approach for instance-based superset label learning. IEEE Trans. Cybern. 48(3), 967–978 (2017)
Peng, Y., Liu, S., Wang, X., Wu, X.: Local constraint and Fisher discriminative dictionary learning algorithm for image classification. Nuerocomputing (2019). https://doi.org/10.1016/j.neucom.2019.05.103
Peng, Y., Li, L., Liu, S., Li, J., Wang, X.: Extended sparse representation based classification method for face recognition. Mach. Vis. Appl. 29(6), 991–1007 (2018)
Liu, S., Li, L., Peng, Y., Qiu, G., Lei, T.: Improved sparse representation method for image classification. IET Comput. Vis. 11(4), 319–330 (2017)
Xu, Y., Fan, Z., Qiu, M., Zhang, D., Yang, J.: A sparse representation method of bimodal biometrics and palmprint recognition experiments. Neurocomputing 103, 164–171 (2013)
Peng, Y., Li, L., Liu, S., Li, J.: Virtual samples and sparse representation based classification algorithm for face recognition. IET Comput. Vis. 13(2), 172–177 (2019)
Xu, Y., Zhang, D., Yang, J., Yang, J.: A two-phase test sample sparse representation method for use with face recognition. IEEE Trans. Circuits Syst. Video Technol. 21(9), 1255–1262 (2011)
Peng, Y., Sehdev, P., Liu, S., Li, J., Wang, X.: l2,1-norm minimization based negative label relaxation linear regression for feature selection. Pattern Recognit. Lett. 116, 170–178 (2018)
Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE International Conference on Computer Vision, 6–13 Nov. 2011, Barcelona, Spain, pp. 471–478
Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)
Peng, Y., Zhang, L., Liu, S., Wang, X., Guo, M.: Kernel negative ε dragging linear regression for pattern classification. Complexity 2691474, 1–14 (2017)
Liu, W., Li, Y., Tao, D., Wang, Y.: A general framework for co-training and its applications. Neurocomputing 167, 112–121 (2015)
Poggio, T., Vetter, T.: Recognition and structure from one 2d model view: observations on prototypes, object classes and symmetries. Artificial Intelligence Laboratory, Massachusetts Institute of Technology. A.I. Memo no (1992)
Beymer, D., Poggio, T.: Face recognition from one example view. In: Proceedings of the Fifth International Conference on Computer Vision, pp. 500–507 (1995)
Ke, J., Peng, Y., Liu, S., Li, J., Pei, Z.: Face recognition based on symmetrical virtual image and original training image. J. Mod. Opt. 65(4), 367–380 (2018)
Li, L., Peng, Y., Qiu, G., Sun, Z., Liu, S.: A survey of virtual sample generation technology for face recognition. Artif. Intell. Rev. 50(1), 1–20 (2018)
Liu, S., Zhang, X., Peng, Y., Cao, H.: Virtual images inspired consolidate collaborative representation based classification method for face recognition. J. Mod. Opt. 63(12), 1181–1188 (2016)
Xu, Y., Zhu, X., Li, Z., Liu, G., Lu, Y., Liu, H.: Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition. Pattern Recognit. 46, 1151–1158 (2013)
Ke, J., Peng, Y., Liu, S., Wu, J., Qiu, G.: Sample partition and grouped sparse representation. J. Mod. Opt. 64(21), 2289–2297 (2017)
Xu, Y., Fang, X., Yang, J., You, J., Liu, H., Teng, S.: Data uncertainty in face recognition. IEEE Trans. Cybern. 44(10), 1950–1961 (2014)
Xu, Y., Li, X., Yang, J., Zhang, D.: Integrate the original face image and its mirror image for face recognition. Neurocomputing 131, 191–199 (2014)
Peng, Y., Liu, S., Qian, Y., Wu, X., Hong, L.: A local mean and variance active contour model for biomedical image segmentation. Journal of Computational Science 33, 11–19 (2019)
Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 995–1006 (2004)
Hou, F., Chen, J., Dong, G.: Weak fault feature extraction of rolling bearings based on globally optimized sparse coding and approximate SVD. Mech. Syst. Signal Process. 11, 234–250 (2018)
Hong, Z.Q.: Algebraic feature extraction of image for recognition. Pattern Recognit. 24(3), 211–219 (1991)
Gong, C., Fu, K., Wu, Q., Tu, E., Yang, J.: Semi-supervised classification with pairwise constraints. Neurocomputing 139, 130–137 (2014)
Ke, J., Peng, Y., Liu, S., Sun, Z., Wang, X.: A novel grouped sparse representation for face recognition. Multimed. Tools Appl. 78(6), 7667–7689 (2019)
Peng, Y., Li, L., Liu, S., Wang, X., Li, J.: Weighted constraint dictionary learning algorithm for image classification. Pattern Recognit. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.09.008
Xu, Y., Li, X., Yang, J., Lai, Z., Zhang, D.: Integrating conventional and inverse representation for face recognition. IEEE Trans. Cybern. 44(10), 1738–1746 (2013)
Peng, Y., Li, L., Liu, S., Lei, T.: Space-frequency domain based joint dictionary learning and collaborative representation for face recognition. Sig. Process. 147, 101–109 (2018)
Georghiades, A.S., Belhumeur, P.N., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)
Martinez, A.M.: The AR face database. CVC Technical Report 24 (1998)
Goel, N., Bebis, G.: Face recognition experiments with random projection. Proc. SPIE Int. Soc. Opt. Eng. 5779, 426–437 (2005)
Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: IEEE Workshop on Applications of Computer Vision, 5–7 Dec. 1994, Sarasota, FL, USA, pp. 138–142
Phillips, P., Moon, H., Rauss, P., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Liu, J., Chen, S., Tan, X.: Fractional order singular value decomposition representation for face recognition. Pattern Recognit. 41(1), 378–395 (2008)
Lu, J., Zhao, Y.: Dominant singular value decomposition representation for face recognition. Signal Process. 90(6), 2087–2093 (2010)
Tai, Y., Yang, J., Luo, L.: Learning discriminative singular value decomposition representation for face recognition. Pattern Recognit. 50(2), 1–16 (2016)
Li, X., Li, A., Bai, X.: 3D face detection and face recognition: state of the art and trends. In: International Conference on Image Processing and Pattern Recognition in Industrial Engineering, International Society for Optics and Photonics (2010)
Zhang, K., Peng, Y., Liu, S.: Discriminative face recognition via kernel sparse representation. Multimed. Tools Appl. 77(24), 32243–32256 (2018)
Peng, Y., Ke, J., Liu, S., Li, J., Lei, T.: An improvement to linear regression classification for face recognition. Int. J. Mach. Learn. Cybern. 10(9), 2229–2243 (2019)
Gong, C., Tao, D., Maybank, S., Liu, W., Kang, G., Yang, J.: Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans. Image Process. 25(7), 3249–3260 (2016)
Zhang, X., Peng, Y., Liu, S., Wu, J., Ren, P.: A supervised dimensionality reduction method based sparse representation for face recognition. J. Modern Opt. 64(8), 799–806 (2017)
Xu, Y., Zhu, Q., Zhang, D.: Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments. Neurocomputing 74(18), 3946–3952 (2011)
Liu, S., Li, L., Jin, M., Hou, S., Peng, Y.: An optimized coefficient vector and representation based classification methods for face recognition. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2960928
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 83–202 (2009)
Liu, Z., Pu, J., Huang, T., Qiu, Y.: A novel classification method for palmprint recognition based on reconstruction error and normalized distance. Appl. Intell. 39(2), 307–314 (2013)
Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Fast ℓ1-minimization algorithms and an application in robust face recognition: a review. In: IEEE International Conference on Image Processing, 26–29 September 2010, Hong Kong, pp. 1849–1852
Xu, Y., Zhu, Q., Chen, Y., Pan, J.: An improvement to the nearest neighbor classifier and face recognition experiments. J. Innov. Comput. Inf. Control 9(2), 543–554 (2013)
Belhumeur, N.P., Hespanha, J.P., David, J.K.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Acknowledgments
This work is supported by the National Key R&D Program of China (No. 2017YFB1402102), the National Natural Science Foundation of China (Nos. 61873155, 61672333, 61703096, 11772178), the National Natural Science Foundation of Shaanxi Province (No. 2018JM6050), Transfer and Promotion Plan of Scientific and Technological Achievements of Shaanxi Province (No. 2019CGXNG-019), Innovation Chain of Key Industries of Shaanxi Province (No. 2019ZDLSF07-01), the Key Science and Technology Program of Shaanxi Province, China (No. 2016GY-081), the Fundamental Research Funds for the Central Universities (No. GK201803088), and the Ministry of Education Cooperation in Production and Education (No. 201701023062).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, S., Wang, Y., Peng, Y. et al. Singular value decomposition-based virtual representation for face recognition. Machine Vision and Applications 31, 19 (2020). https://doi.org/10.1007/s00138-020-01067-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-020-01067-4