Skip to main content
Log in

A novel approach for unsupervised image segmentation fusion of plant leaves based on G-mutual information

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Plant leaf segmentation has a very important role in most plant identification methods. Tree leaves segmentation in images with complex background is very difficult when there is no prior information about the leaves and backgrounds. In practice, the parameters of unsupervised image segmentation algorithms must be set for each image to get the best results. In this paper, to overcome this problem, fusion of the results of five leaf segmentation algorithms (fuzzy c-means, SOM and k-means in various color spaces or different parameters) is applied. To fuse the results of these segmentations, new equations for mutual information (g-mutual information equations) based on the g-calculus are introduced to find the best consensus segmentation. The results of the mentioned primary clustering algorithms are considered as a new feature vector for each pixel. To reduce the time complexity, a fast method is employed using truth table containing different feature vectors. To evaluate this new approach, a leaf image database with natural scenes, taken from Pl@ntLeaves database, is generated to have different positions and orientations. In addition, a widely used database is used to compare the proposed method with other methods. The experimental results presented in this paper show that the use of g-calculus in fusion of image segmentations improves the evaluation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sabzi, S., Abbaspour-Gilandeh, Y., García-Mateos, G.: A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Comput. Ind. 98, 80–89 (2018)

    Article  Google Scholar 

  2. Zhang, P., Xu, L.: Unsupervised segmentation of greenhouse plant images based on statistical method. Sci. Rep. 1(8), 4465 (2018)

    Article  Google Scholar 

  3. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cybern. 1(9), 62–66 (1979)

    Article  Google Scholar 

  4. Scharr, H., et al.: Leaf segmentation in plant phenotyping: a collation study. Mach. Vis. Appl. 4(27), 585–606 (2016)

    Article  Google Scholar 

  5. Yu, Z., et al.: Semi-supervised ensemble clustering based on selected constraint projection. IEEE Trans. Knowl. Data Eng. 12(30), 2394–2407 (2018)

    Article  Google Scholar 

  6. Huang, D., Wang, C.-D., Lai, J.-H.: Locally weighted ensemble clustering. IEEE Ttrans. Cybern. 5(48), 1460–1473 (2017)

    Google Scholar 

  7. Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 12, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: models of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intel. 12(27), 1866–1881 (2005)

    Article  Google Scholar 

  9. Franek, L., Jiang, X.: Ensemble clustering by means of clustering embedding in vector spaces. Patt. Recog. 2(47), 833–842 (2014)

    Article  Google Scholar 

  10. Wang, H., Zhang, Y., Nie, R., Yang, Y., Peng, B., Li, T.: Bayesian image segmentation fusion. Knowl. Based Syst. 71, 162–168 (2014)

    Article  Google Scholar 

  11. Ren, Y., Domeniconi, C., Zhang, G., Yu, G.: Weighted-object ensemble clustering: methods and analysis. Know. Inf. Sys. 2(51), 661–689 (2017)

    Article  Google Scholar 

  12. Wei, H., Chen, L., Guo, L.: KL divergence-based fuzzy cluster ensemble for image segmentation. Entropy 4(20), 273 (2018)

    MathSciNet  Google Scholar 

  13. Wu, J., Wu, Z., Cao, J., Liu, H., Chen, G., Zhang, Y.: Fuzzy consensus clustering with applications on big data. IEEE Trans. Fuz. Sys. 6(25), 1430–1445 (2017)

    Article  Google Scholar 

  14. Bai, X.D., Cao, Z.G., Wang, Y., Yu, Z.H., Zhang, X.F., Li, C.N.: Crop segmentation from images by morphology modeling in the CIE L* a* b* color space. Comput. Electron. Agric. 99, 21–34 (2013)

    Article  Google Scholar 

  15. Gao, L., Lin, X.: A method for accurately segmenting images of medicinal plant leaves with complex backgrounds. Comput. Electron. Agric. 155, 426–445 (2018)

    Article  Google Scholar 

  16. Grand-Brochier, M., Vacavant, A., Cerutti, G., Kurtz, C., Weber, J., Tougne, L.: Tree leaves extraction in natural images: comparative study of preprocessing tools and segmentation methods. IEEE Trans. Image Process. 5(24), 1549–1560 (2015)

    Article  MathSciNet  Google Scholar 

  17. Wang, Z., Wang, K., Yang, F., Pan, S., Han, Y.: Image segmentation of overlapping leaves based on Chan-Vese model and Sobel operator. Inform. Process. Agric. 1(5), 1–10 (2018)

    Google Scholar 

  18. Yanikoglu, B., Aptoula, E., Tirkaz, C.: Automatic plant identification from photographs. Mach. Vis. Appl. 6(25), 1369–1383 (2014)

    Article  Google Scholar 

  19. Aakif, A., Khan, M.F.: Automatic classification of plants based on their leaves. Biosyst. Eng. 139, 66–75 (2015)

    Article  Google Scholar 

  20. Soares, J.V.B., Jacobs, D.W.: Efficient segmentation of leaves in semi-controlled conditions. Mach. Vis. Appl. 24(8), 1623–1643 (2013)

    Article  Google Scholar 

  21. Turkoglu, M., Hanbay, D.: Recognition of plant leaves: an approach with hybrid features produced by dividing leaf images into two and four parts. Appl. Math. Comput. 352, 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  22. Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y. X., Chang, Y. F., Xiang, Q. L. A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE international symposium on signal processing and information technology, pp 11–16 (2007)

  23. Yousefi, E., Baleghi, Y., Sakhaei, S.M.: Rotation invariant wavelet descriptors, a new set of features to enhance plant leaves classification. Comput. Electron. Agric. 140, 70–76 (2017)

    Article  Google Scholar 

  24. Wäldchen, J., Mäder, P.: Plant species identification using computer vision techniques: a systematic literature review. Arch. Comput. Method. Eng. 2(25), 507–543 (2018)

    Article  MathSciNet  Google Scholar 

  25. Nikbakhsh, N., Baleghi, Y., Agahi, H.: Maximum mutual information and Tsallis entropy for unsupervised segmentation of tree leaves in natural scenes. Comput. Electron. Agric. 162, 440–449 (2019)

    Article  Google Scholar 

  26. Bakhshipour, A., Jafari, A., Nassiri, S.M., Zare, D.: Weed segmentation using texture features extracted from wavelet sub-images. Biosyst. Eng. 157, 1–12 (2017)

    Article  Google Scholar 

  27. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 2(10), 266–277 (2001)

    Article  Google Scholar 

  28. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  29. Barré, P., Stöver, B.C., Müller, K.F., Steinhage, V.: LeafNet: a computer vision system for automatic plant species identification. Ecol. Inform. 40, 50–56 (2017)

    Article  Google Scholar 

  30. Valindria, V.V., et al.: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans. Med. Imag. 8(36), 1597–1606 (2017)

    Article  Google Scholar 

  31. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  32. Bede, B., O’Regan, D.: The theory of pseudo-linear operators. Knowl.-Based Syst. 38, 19–26 (2013)

    Article  Google Scholar 

  33. Mehri-Dehnavi, H., Agahi, H., Mesiar, R.: Pseudo-exponential distribution and its statistical applications in econophysics. Soft. Comput. 1(23), 357–363 (2019)

    Article  Google Scholar 

  34. Pap, E., Takači, D., Takači, A.: The g-operational calculus. Int. J. Unc. Fuzz. Knowl.-Based Syst. 1(10), 75–88 (2002)

    Article  Google Scholar 

  35. Zhang, Y., Dong, Z., Phillips, P., Wang, S., Ji, G., Yang, J.: Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging. Inform. Sci. 322, 115–132 (2015)

    Article  MathSciNet  Google Scholar 

  36. Cope, J.S., Corney, D., Clark, J.Y., Remagnino, P., Wilkin, P.: Plant species identification using digital morphometrics: a review. Expert Sys. Appl. 8(39), 7562–7573 (2012)

    Article  Google Scholar 

  37. Chouhan, S.S., Kaul, A., Singh, U.P.: Soft comput.ng approaches for image segmentation: a survey. Multimed. Tools Appl. 21(77), 28483–28537 (2018)

    Article  Google Scholar 

  38. Zhang, X., Sun, Y., Wang, G., Guo, Q., Zhang, C., Chen, B.: Improved fuzzy clustering algorithm with non-local information for image segmentation. Multimed. Tools Appl. 6(76), 7869–7895 (2017)

    Article  Google Scholar 

  39. Weber, J., Lefevre, S., & Gançarski, P.: Interactive video segmentation based on quasi-flat zones. In 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA), pp 265–270 (2011)

Download references

Acknowledgement

The authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant program Nos. BNUT/370123/99 and BNUT/392100/99.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Baleghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikbakhsh, N., Baleghi, Y. & Agahi, H. A novel approach for unsupervised image segmentation fusion of plant leaves based on G-mutual information. Machine Vision and Applications 32, 5 (2021). https://doi.org/10.1007/s00138-020-01130-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01130-0

Keywords

Navigation