Abstract
Recent studies have shown that CycleGAN is a highly influential medical image synthesis model. However, the lack of sufficient constraints and the bottleneck layer in auto-encoder network usually lead to blurry image and meaningless features, which may affect medical judgment. In order to synthesize accurate and meaningful medical images, weighted feature transfer GAN (WFT-GAN) is proposed to improve the quality of generated medical image, which is applied to the synthesis of unpaired multi-modal data. WFT-GAN adopts weighted feature transfer (WFT) instead of traditional skip connection to reduce the interference of encoding information on image decoding, while retaining the advantage of skip connection to the information transmission of the generated image. Moreover, the local perceptual adversarial loss combines the VGG feature map and adversarial model to make the local features of the image more meaningful. Experiments in three data sets show that the method in this paper can synthesize higher-quality medical images.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wang, S.H., et al.: Alcoholism identification based on an alexnet transfer learning model. Front. Psychiatry (2019). https://doi.org/10.3389/fpsyt.2019.00205
Wang, S.-H., Muhammad, K., Hong, J., Sangaiah, A.K., Zhang, Y.-D.: Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Comput. Appl. 32(3), 665–680 (2020). https://doi.org/10.1007/s00521-018-3924-0
Wang, S., Sun, J., Mehmood, I., Pan, C., Chen, Y., Zhang, Y.-D.: Cerebral micro-bleeding identification based on a nine-layer convolutional neural network with stochastic pooling. Concurr. Comput. Pract. Exp. 32(1), e5130 (2020). https://doi.org/10.1002/cpe.5130
Wang, S.-H., Zhang, Y.-D., Yang, M., Liu, B., Ramirez, J., Gorriz, J.M.: Unilateral sensorineural hearing loss identification based on double-density dual-tree complex wavelet transform and multinomial logistic regression. Integr. Comput.-Aided Eng. 26(4), 411–426 (2019). https://doi.org/10.3233/ICA-190605
Wu, H., Jiang, X., Jia, F.: UC-GAN for MR to CT image synthesis. In: Artificial Intelligence in Radiation Therapy, pp. 146–153. Springer, Cham (2019)
Zhao, H., Li, H., Maurer-Stroh, S., Guo, Y., Deng, Q., Cheng, L.: Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Trans. Med. Imaging 38(1), 46–56 (2019). https://doi.org/10.1109/TMI.2018.2854886
Jin, C.-B., et al.: Deep CT to MR synthesis using paired and unpaired data. Sensors (2019). https://doi.org/10.3390/s19102361
Xiang, L., et al.: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Med. Image Anal. 47, 31–44 (2018). https://doi.org/10.1016/j.media.2018.03.011
J.-Y. Zhu, Park, T., Isola, P., Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In 2017 IEEE international conference on computer vision (ICCV), Oct pp. 2242–2251. (2017) Doi: https://doi.org/10.1109/ICCV.2017.244
Fabius, O., van Amersfoort J.R. Variational Recurrent Auto-Encoders. ArXiv14126581 Cs Stat, (2015), Accessed May 10, 2020. [Online]. Available: https://arxiv.org/abs/1412.6581
Cai, X., Li, S., Liu, X., Han, G.: Vision-based fall detection with multi-task hourglass convolutional auto-encoder. IEEE Access 8, 44493–44502 (2020). https://doi.org/10.1109/ACCESS.2020.2978249
Choi, Y., Choi, M. Kim, M., J.-W. Ha, Kim, S., Choo, J. StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In 2018 IEEE/CVF conference on computer vision and pattern recognition, Salt Lake City, UT, pp. 8789–8797 (2018). doi: https://doi.org/10.1109/CVPR.2018.00916
Liu, M., et al., STGAN: a unified selective transfer network for arbitrary image attribute editing. pp. 3673–3682 (2019) Accessed: Aug. 18, 2020. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_STGAN_A_Unified_Selective_Transfer_Network_for_Arbitrary_Image_Attribute_CVPR_2019_paper.html.
Liu, M., et al., “STGAN: a unified selective transfer network for arbitrary image attribute editing. pp. 3673–3682 ( 2019) Accessed: Jul. 15, 2020. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_STGAN_A_Unified_Selective_Transfer_Network_for_Arbitrary_Image_Attribute_CVPR_2019_paper.html
Zhang, H., Goodfellow, I., Metaxas, D., Odena, A. Self-attention generative adversarial networks. In international conference on machine learning. May (2019), pp. 7354–7363, Accessed: Jul. 15, 2020. [Online]. Available: https://proceedings.mlr.press/v97/zhang19d.html
Mechrez, R., Talmi, I., Zelnik-Manor, L. The contextual loss for image transformation with non-aligned data. In: Computer Vision–ECCV 2018, Cham, pp. 800–815 (2018). doi: 10.1007/978-3-030-01264-9_47
Zhang, X., Ng, R., Chen, Q. Single image reflection separation with perceptual losses. In 2018 IEEE/CVF conference on computer vision and pattern recognition pp. 4786–4794 (2018). doi: https://doi.org/10.1109/CVPR.2018.00503
Wang, L., Guo, S., Huang, W., Qiao, Y. Places205-VGGNet models for scene recognition. ArXiv150801667 Cs, Aug. (2015), Accessed: Aug. 17, 2020. [Online]. Available: https://arxiv.org/abs/1508.01667
Joyce, T., Chartsias, A., Tsaftaris, S.A. Robust multi-modal MR image synthesis. In: Medical Image Computing and Computer Assisted Intervention−MICCAI 2017, Cham: Springer pp. 347–355 (2017) 10.1007/978-3-319-66179-7_40
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H. Synthetic data augmentation using GAN for improved liver lesion classification. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), Apr 2018, pp. 289–293, https://doi.org/10.1109/ISBI.2018.8363576
Ouerghi, H., Mourali, O., Zagrouba, E.: Non-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour space. IET Image Process. 12(10), 1873–1880 (2018). https://doi.org/10.1049/iet-ipr.2017.1298
Costa, P., Galdran, A., Meyer, M.I., Mendonça, A.M., Campilho, A. Adversarial synthesis of retinal images from vessel trees. In Image Analysis and Recognition. Cham: Springer pp. 516–523 (2017). https://doi.org/10.1007/978-3-319-59876-5_57
Lample, G., Zeghidour, N., Usunier, N., Bordes, A., DENOYER,L., Ranzato, M. A., Fader Networks:Manipulating Images by Sliding Attributes. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, (Eds.) Advances in Neural Information Processing Systems 30, Curran Associates, Inc., pp. 5967–5976 (2017)
Zhou, S., Nie, D., Adeli, E., Yin, J., Lian, J., Shen, D.: High-resolution encoder–decoder networks for low-contrast medical image segmentation. IEEE Trans. Image Process. 29, 461–475 (2020). https://doi.org/10.1109/TIP.2019.2919937
Ronneberger, O., Fischer, P., Brox, T. U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Cham, pp. 234–241 (2015) doi: 10.1007/978-3-319-24574-4_28
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury,S., Pal, C.The importance of skip connections in biomedical image segmentation. In Deep Learning and Data Labeling for Medical Applications, Cham pp. 179–187 (2016) doi: https://doi.org/10.1007/978-3-319-46976-8_19
Mechrez, R., Talmi, I., Zelnik-Manor, L., The contextual loss for image transformation with non-aligned data. ArXiv180302077 Cs, Jul. (2018). Accessed: May 20, 2020. [Online]. Available: https://arxiv.org/abs/1803.02077
Mechrez, R., Talmi, I.,Shama, F., Zelnik-Manor, L. Maintaining natural image statistics with the contextual loss. In Computer Vision–ACCV 2018, Dec, pp. 427–443 (2018) doi: https://doi.org/10.1007/978-3-030-20893-6_27
Yang, Q., H.-X. Yu, Wu, A., W.-S. Zheng. Patch-based discriminative feature learning for unsupervised person re-identification. pp. 3633–3642 (2019) Accessed: Sep. 23, 2020. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2019/html/Yang_Patch-Based_Discriminative_Feature_Learning_for_Unsupervised_Person_Re-Identification_CVPR_2019_paper.html
Goodfellow, I.J. et al. Generative adversarial networks ArXiv14062661 Cs Stat, Jun (2014), Accessed: May 10, 2020. [Online]. Available: https://arxiv.org/abs/1406.2661
Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J. Learning to discover cross-domain relations with generative adversarial networks. In International Conference on Machine Learning. Jul (2017), pp. 1857–1865, Accessed: May 11, 2020. [Online]. Available: https://proceedings.mlr.press/v70/kim17a.html
Kingma, D.P., Ba, J. Adam: a method for stochastic optimization. ArXiv14126980 Cs, Jan (2017), Accessed: May 11, 2020. [Online]. Available: https://arxiv.org/abs/1412.6980
Kavur, A.E., et al. CHAOS Challenge–combined (ct-mr) healthy abdominal organ segmentation. ArXiv200106535 Cs Eess, May 2020, Accessed: Aug. 18, 2020. [Online]. Available: https://arxiv.org/abs/2001.06535
“DRIVE-Grand Challenge,” grand-challenge.org. https://drive.grand-challenge.org/(accessed Aug. 18, 2020)
Chen, J., Tian, J., Lee, N., Zheng, J., Smith, R.T., Laine, A.F.: A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010). https://doi.org/10.1109/TBME.2010.2042169
Hernandez-Matas, C., Zabulis, X., Argyros, A.A. Retinal image registration through simultaneous camera pose and eye shape estimation. In 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Orlando, FL, USA, Aug. 2016, pp. 3247–3251, doi: https://doi.org/10.1109/EMBC.2016.7591421
Acknowledgements
The work is partially supported by the Natural Science Foundation of China (Nos. 61503188), CERNET Innovation Project (NGII20180604) and the Natural Science Foundation of Jiangsu Province (Nos. BK20180727).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yao, S., Tan, J., Chen, Y. et al. A weighted feature transfer gan for medical image synthesis. Machine Vision and Applications 32, 22 (2021). https://doi.org/10.1007/s00138-020-01152-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-020-01152-8