Skip to main content
Log in

Multi-view subspace clustering with Kronecker-basis-representation-based tensor sparsity measure

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Multi-view data are popular in many machine learning and computer vision applications. For example, in computer vision fields, one object can be described with images, text or videos. Recently, multi-view subspace clustering approaches, which can make use of the complementary information among different views to improve the performance of clustering, have attracted much attention. In this paper, we propose a novel multi-view subspace clustering method with Kronecker-basis-representation-based tensor sparsity measure (MSC-KBR) to address multi-view subspace clustering problem. In the MSC-KBR model, we first construct a tensor based on the subspace representation matrices of different views, and, then the high-order correlations underlying different views can be explored. We also adopt a novel Kronecker-basis-representation-based tensor sparsity measure (KBR) to the constructed tensor to reduce the redundancy of the learned subspace representations and improve the accuracy of clustering. Different from the traditional unfolding-based tensor norm, KBR can encode both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC decompositions for a general tensor. By using the augmented Lagrangian method, an efficient algorithm is presented to solve the optimization problem of the MSC-KBR model. The experimental results on some datasets show that the proposed MSC-KBR model outperforms many state-of-the-art multi-view clustering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.uk.research.att.com/facedatabase.html.

  2. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

  3. http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.

  4. http://www.cs.columbia.edu/CAVE/software/softlib/.

References

  1. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan J., Nicholas C., Teboulle M. (eds) Grouping Multidimensional Data. Springer, Berlin, Heidelberg. pp. 1–56 (2006). https://doi.org/10.1007/3-540-28349-8_2

  2. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Proceedings of the Neural Information Processing Systems, pp. 849–856 (2002)

  3. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  4. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 171–184 (2013)

    Article  Google Scholar 

  5. Zhao, C., Chen, K., Zang, D., Zhang, Z., Zuo, W., Miao, D.: Uncertainty-optimized deep learning model for small-scale person re-identication. Sci. China Inf. Sci. 62(12), 1–13 (2019). https://doi.org/10.1007/s11432-019-2675-3

    Article  Google Scholar 

  6. Zhao, C., Wang, X., Miao, D., Xu, Y., Zhang, D.: Maximal granularity structure and generalized multi-view discriminant analysis for person re-identification. Pattern Recogn. 79, 79–96 (2018)

    Article  Google Scholar 

  7. Gu, J., Li, P.: Multi-view feature selection for heterogeneous face recognition. In: IEEE International Conference on Data Mining (ICDM), pp. 983–988 (2018)

  8. Zhang, C., Fu, H., Liu, S., Liu, G., Cao, X.: Low-rank tensor constrained multiview subspace clustering. In: IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1582–1590 (2015)

  9. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, Québec, Canada, pp. 2149–2155 (2014)

  10. Xie, Y., Tao, D., Zhang, W., Liu, Y., Zhang, L., Qu, Y.: On unifying multi-view self-representations for clustering by tensor multi-tank minimization. Int. J. Comput. Vis. 126(11), 1157–1179 (2018)

    Article  MathSciNet  Google Scholar 

  11. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity induced multi-view subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 586–594 (2015)

  12. Xu, C., Tao, D., Xu, C.: A survey on multi-view learning, pp. 1–59, arXiv:1304.5634v1 (2013)

  13. Bickel, S., Scheffer, T.: Multi-view clustering. In: Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM), Brighton, pp. 19–26 (2004)

  14. Kumar, A., Rai, P., Hal Daumé, I.: Co-regularized multi-view spectral clustering. In: Proceedings of the 24th International Conference on Neural Information Processing Systems (NIPS), Granada, pp. 1413–1421 (2011)

  15. Yin, Q., Wu, S., Wang, L.: Multiview clustering via unified and view-specific embeddings learning. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5541–5553 (2018)

    Article  MathSciNet  Google Scholar 

  16. Yin, M., Gao, J., Xie, S., Guo, Y.: Multiview subspace clustering via tensorial t-Product representation. IEEE Trans. Neural Netw. Learn. Syst. 30(3), 851–864 (2019)

    Article  MathSciNet  Google Scholar 

  17. Sa, V.R.D.: Spectral clustering with two views. In: ICML Workshop on Learning with Multiple Views, pp. 20–27 (2005)

  18. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 252–260 (2013)

  19. Tzortzis, G., Likas, A.: Kernel-based weighted multi-view clustering. In: Proceedings of the IEEE International Conference on Date Mining, Brussels, pp. 675–684 (2012)

  20. Vidal, R.: Subspace clustering. IEEE Signal Process. Mag. 28(2), 52–68 (2011)

    Article  Google Scholar 

  21. Brbić, M., Kopriva, I.: Multi-view low-rank sparse subspace clustering. Pattern Recogn. 73, 247–258 (2018)

    Article  Google Scholar 

  22. Gao, H., Nie, F., Li, X., Huang, H.: Multi-view subspace clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4238–4246 (2015)

  23. Yan, C., Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.2975798

    Article  Google Scholar 

  24. Yan, C., Li, Z., Zhang, Y., Liu, Y., Ji, X., Zhang, Y.: Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 16(4), 1–17 (2020)

    Article  Google Scholar 

  25. Yan, C., Shao, B., Zhao, H., Ning, R., Zhang, Y., Xu, F.: 3D room layout estimation from a single RGB image. IEEE Trans. Multimed. 22(11), 3014–3024 (2020)

    Article  Google Scholar 

  26. Göngör, F., Tutsoy, O.: Design of a chair recognition algorithm and implementation to a humanoid robot. In: International Science and Academic Congress, Konya, Turkey, pp. 1–15 (2018)

  27. Peng, W., Li, T., Shao, B.: Clustering multi-way data via adaptive subspace iteration. In: The 17th ACM Conference on Information and Knowledge Management, Napa Valley, California, pp. 1519–1520 (2008)

  28. Kilmer, M.E., Braman, K.S., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    Article  MathSciNet  Google Scholar 

  29. Zhou, P., Lu, C., Lin, Z., Zhang, C.: Tensor factorization for low-rank tensor completion. IEEE Trans. Image Process. 27(3), 1152–1163 (2018)

    Article  MathSciNet  Google Scholar 

  30. Zhang, A., Xia, D.: Tensor SVD: statistical and computational limits. IEEE Trans. Inf. Theory 64(11), 7311–7338 (2018)

    Article  MathSciNet  Google Scholar 

  31. Xie, Q., Zhao, Q., Meng, D., Xu, Z.: Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1888–1902 (2018)

    Article  Google Scholar 

  32. Xie, Q., Zhao, Q., Meng, D., Xu, Z., Gu, S., Zuo, W., Zhang, L.: Multispectral images denoising by intrinsic tensor sparsity regularization. In: Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas (2016)

  33. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  34. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  35. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low rank representation. In: Advances in Neural Information Processing Systems, Granada, pp. 612–620 (2011)

  36. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  37. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 2862–2869 (2014)

  38. Lu, C., Zhu, C., Xu, C., Yan, S., Lin, Z.: Generalized singular value thresholding. In: AAAI Conference on Artificial Intelligence, pp. 1805–1811 (2015)

  39. Gong, P., Zhang, C., Lu, Z., Huang, J.Z., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: Proceedings of the 30th International Conference on Machine Learning, Atlanta, pp. 37–45 (2013)

  40. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  41. Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., Malsburg, C.V.D., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42(3), 300–311 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by NSFC of China (Nos. 61976005, 61772277); the Anhui Natural Science Foundation (No. 1908085MF183); the Safety-Critical Software Key Laboratory Research Program (Grant No. NJ2018014); the Training Program for Young and Middle-aged Top Talents of Anhui Polytechnic University (No. 201812); the State Key Laboratory for Novel Software Technology (Nanjing University) Research Program (No. KFKT2019B23); and the Major Project of Natural Science Research in Colleges and Universities of Anhui Province (No. KJ2019ZD15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Fu Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, GF., Li, H., Wang, Y. et al. Multi-view subspace clustering with Kronecker-basis-representation-based tensor sparsity measure. Machine Vision and Applications 32, 123 (2021). https://doi.org/10.1007/s00138-021-01247-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-021-01247-w

Keywords

Navigation