Skip to main content

Advertisement

Log in

Wavelet and PCA-based glaucoma classification through novel methodological enhanced retinal images

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a systematic retinal image enhancement and classification method. The proposed method deals with balancing all the visual and technical aspects of the image for glaucoma diagnosis. Initially, similar 3D image blocks are obtained for each retinal image using novel block-matching and grouping techniques. The proposed enhancement technique emphasizes these blocks, which constitute careful estimation of low frequency for each 3D block followed by enhancement using the new alpha-rooting method with adaptive alpha value. During this, the image may over-enhance in some areas, which can be corrected through the image polishing phase that uses cumulative distribution function (CDF) transformations. The enhanced retinal images are qualitatively compared with the outcomes of some existing methods and are employed in glaucoma classification using principal component analysis (PCA) and its variants using discrete wavelet transformations (DWT). We have carried out a deep investigation to find the best combination of DWT and PCA variants. The results obtained from the implementation proved that the performance of the proposed method is highly satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: https://depositphotos.com/vector-images/cornea.html

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Prince, J.L., Links, J.M.: Medical imaging signals and systems. Pearson Prentice Hall: Hoboken (2006)

  2. Nirmala, K., Venkateswaran, N., Kumar, C. V.: HoG based Naive Bayes classifier for glaucoma detection. In: TENCON 2017–2017 IEEE Region 10 Conference, Penang (2017), pp. 2331–2336, doi: https://doi.org/10.1109/TENCON.2017.8228250.

  3. Zohora, S.E., Chakraborty, S., Khan, A.M., Dey, N.: Glaucomatous image classification: a review. In: Proceedings of the 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT), Chennai, 2016, pp. 637–642, doi: https://doi.org/10.1109/ICEEOT.2016.7754758.

  4. Quigley, H.A.: Number of people with glaucoma worldwide. Br. J. Opthalmol. 80(5), 389–393 (1996)

    Article  Google Scholar 

  5. Mi, X.-S., Yuan, T.-F., So, K.-F.: The current research status of normal tension glaucoma. Clin. Interv. Aging 9, 1563–1571 (2014)

    Google Scholar 

  6. Tangelder, G.J.M., Reus, N.J., Lemij, H.G.: Estimating the clinical usefulness of optic disc biometry for detecting glaucomatous change over time. Eye 20, 755–763 (2006)

    Article  Google Scholar 

  7. Jonas, J., Fernández, M., Stürmer, J.: Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 100(1), 63–68 (1993)

    Article  Google Scholar 

  8. Jonas, J., Budde, W., Jonas, S.: Ophthalmoscopic evaluation of optic nerve head. Surv. Ophthalmol. 43, 293–320 (1999)

    Article  Google Scholar 

  9. Jonas, J.: Clinical implications of peripapillary atrophy in glaucoma. Curr. Opin. Ophthalmol. 16, 84–88 (2005)

    Article  Google Scholar 

  10. Schacknow, P. N., Samples, J. R.: Practical, evidence-based approach to patient care, the glaucoma book, ISBN: 978-0-387-76699-7, Springer, (2010)

  11. Bernardes, R., Serranho, P., Lobo, C.: Digital ocular fundus imaging: a review. Ophthalmologica 226(4), 161–181 (2011). https://doi.org/10.1159/000329597

    Article  Google Scholar 

  12. Opticdisc, Evaluation of Glaucoma. http://www.opticdisc.org/tutorials/glaucoma_evaluation_basics (Accessed in June,2015); Jonas JB, GusekGC, NaumannGO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Published corrections appear in: Invest Ophthalmol Vis Sci. 1991; 321893;and Invest. Ophthalmol. Vis. Sci. 1992;32474–475 Invest Ophthalmol Vis Sci 1988;291151–1158.

  13. Zhao, C., et al.: "A new approach for medical image enhancement based on luminance-level modulation and gradient modulation. Biomed. Signal Process. Control 48, 189–196 (2019)

    Article  Google Scholar 

  14. Guan, J., et al.: Medical image enhancement method based on the fractional order derivative and the directional derivative. Int. J. Pattern Recogn. Artif. Intell. 32(03), 1857001 (2018)

    Article  MathSciNet  Google Scholar 

  15. Agarwal, M., Mahajan, R.: Medical image contrast enhancement using range limited weighted histogram equalization. Proc. Comput. Sci. 125, 149–156 (2018)

    Article  Google Scholar 

  16. Anto Bennet, M., Dharini, D., Mathi Priyadharshini, S.: Detectionof blood vessel segmentation in retinal images using adaptive filters. J. Chem. Pharm. Res. 8(4), 290–298 (2016)

    Google Scholar 

  17. Tripathi, S., Singh, K.K.: Automatic detection of exudates in retinal fundus images using differential morphological profile. Int. J. Eng. Technol. 5(3), 0975–4024 (2013)

    Google Scholar 

  18. Young, R.: The Gaussian derivative model for spatial vision. I Retinal mechanisms. Spatial Vis. 2(4), 273–293 (1987)

    Article  Google Scholar 

  19. Kumar, H.S.V., et al.: A comparative study on filters with special reference to retinal images. Proc. Int. J. Comput. Appl. 138(5), 81–86 (2016)

    Google Scholar 

  20. Swaminathan, A., et al.: Contourlet transform-based sharpening enhancement of retinal images and vessel extraction application. Biomed. Eng. Biomed. Tech. 58(1), 87–96 (2013)

    Google Scholar 

  21. Dabov, K., et al.: Joint image sharpening and denoising by 3D transform-domain collaborative filtering. In: Proceedings of the 2007 Int. TICSP Workshop Spectral Meth. Multirate Signal Process., SMMSP. Vol. 2007. Citeseer (2007)

  22. Gonzalez, R.C., Woods, R.E., Masters, B.R.: Digital image processing. J. Biomed. Opt. (2009). doi:https://doi.org/10.1117/1.3115362.

  23. Kim, Y.T.: Contrast enhancement using brightness preserving bihistogram equalization. IEEE Trans. Consum. Electron. 43, 1–8 (1997). https://doi.org/10.1109/30.580378

    Article  Google Scholar 

  24. Chen, S.D., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49, 1310–1319 (2003). https://doi.org/10.1109/TCE.2003.1261234

    Article  Google Scholar 

  25. Bodaisingi, N., Narayanam, B.: Techniques for de-noising of bio-medical images. Int. J. Bio. Biomed. Eng. 12, 28–34 (2018)

    Google Scholar 

  26. Grigoryan, A.M., John A., Agaian S.S.: Modified alpha-rooting color image enhancement method on the two-side 2-D quaternion discrete Fourier transform and the 2-D discrete Fourier transform. (2017)

  27. Mitra, A., et al.: Enhancement and restoration of non-uniform illuminated fundus image of retina obtained through thin layer of cataract. Comput. Methods Prog. Biomed. 156, 169–178 (2018)

    Article  Google Scholar 

  28. Chen, B., et al.: Blood vessel enhancement via multi-dictionary and sparse coding: application to retinal vessel enhancing. Neurocomputing 200, 110–117 (2016)

    Article  Google Scholar 

  29. Chen, T.-J., et al.: A blurring index for medical images. J. Dig. Imag. 19(2), 118 (2006)

    Article  Google Scholar 

  30. Fundus Image Processing for Automatic Screening of Ophthalmological Diseases. http://www.cvblab.webs.upv.es//project/acrima_en/.

  31. Voronin, V., Zelensky, A., Agaian, S.: 3-D block-rooting scheme with application to medical image enhancement. IEEE Access (2020).

  32. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gan, G., Ma, C., Wu, J.: Data clustering theory, algorithms, and applications. ASASIAM Ser. Stat. Appl. Soc. Ind. Appl. Math. (2007).

  34. Goswami, M., Babu, A., Purkayastha, B.S.: A comparative analysis of similarity measures to find coherent documents. Appl. Sci. Manag. 8(11), 786–797 (2018)

    Google Scholar 

  35. Xu, R., Wunsch, D.: Survey of clustering algorithms [Internet]. IEEE Trans. Neural Netw. (2005). pp. 645–678. doi: https://doi.org/10.1109/TNN.2005.845141 PMID: 15940994.

  36. December 1984. Vol. 7, No. 2. 120. Journal of Ophthalmic Photography. Errors in Fundus Photography. Patrick J. Saine, B.S., C.R.A. Retina Unit, St. Vincent Medical Center, 2213 Cherry Street, Toledo, OH 43608.

  37. Cao, L., et al.: Retinal image enhancement using low-pass filtering and α-rooting. Signal Process. 170, 107445 (2020)

    Article  Google Scholar 

  38. Yu, T., Meng, X., Zhu, M., Han, M.: An improved multi-scale Retinex fog and haze image enhancement method. In: Proceedings of the International Conference on Information System and Artificial Intelligence, pp. 557–560 (2017)

  39. Grigoryan, A.M., Again, S.S.: Tensor representation of color images and fast 2-D quaternion discrete Fourier transform. [9399–16]. In: Proceedings of SPIE vol. 9399, 2015 Electronic Imaging: Image Processing: Algorithms and Systems XIII, February 10–11, San Francisco, California, (2015)

  40. Sangwine, S.J., Ell, T.A.: Hypercomplex Fourier transforms of color images. In: Proceedings of the IEEE International Conference on Image Processing, vol. 1, pp. 137–140, (2001)

  41. Agaian, S.S., Lentz, K.P., Grigoryan, A.M.: A new measure of image enhancement. IASTED Int. Conf. Signal Process. Commun. (2000)

  42. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptivegamma correction with weighting distribution. IEEE Trans. Image Process. 22, 1032–1041 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gupta, B., Tiwari, M.: Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework. Optik 127(4), 1671–1676 (2016)

    Article  Google Scholar 

  44. Gupta, B., Tiwari, M.: Color retinal image enhancement using luminosity and quantile based contrast enhancement. Multidimen. Syst. Signal Process. 30(4), 1829–1837 (2019)

    Article  MATH  Google Scholar 

  45. Kumar, D., Singh, U., Singh, S.K.: A method of proposing new distribution and its application to bladder cancer patients data. J. Stat. Appl. Pro. Lett. 2(3), 235–245 (2015)

    Google Scholar 

  46. Shaw, W. T. and Buckley, I. R. C. (2009): The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map

  47. Kumar, D., Singh, U., Singh, S.K.: Life time distributions: derived from some minimum guarantee distribution. Sohag J. Math. 4(1), 7–11 (2017)

    Article  Google Scholar 

  48. Chesneau, C., Bakouch, H.: A new cumulative distribution function based on m existing ones (2017)

  49. Qiu, C., Ren, H., Zou, H., Zhou, S.: Performance comparison of target classification in SAR images based on PCA and 2D-PCA features. In: Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 868–871 (2009)

  50. Jolliffe, I.T.: Principal component analysis. Springer, New York (1986)

    Book  MATH  Google Scholar 

  51. Andrew, R.W.: Statistical pattern recognition, 2nd edn. Wiley, Chicheste (2002)

    MATH  Google Scholar 

  52. Guo-hui, H., Jun-ying, G.: Application study for 2DPCA in face recognition. Comput. Eng. Des. 27(24), 4667–4673 (2006)

    Google Scholar 

  53. Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two-dimensional PCA: a new approach to appearancebased face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)

    Article  Google Scholar 

  54. Zhang, D.Q., Chen, S.C., Liu, J.: Representing image matrices: eigenimages vs. eigenvectors. In: Proceedings of the Second International Symposium on Neural Networks (ISNN’05), vol. 2, Chongqing, China, pp. 659–664 (2005)

  55. Mishra, A.K., Mulgrew, B.: Radar signal classification using PCA-based features. In: proceeding of ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1104–1107 (2006)

  56. Hu, L., Liu, J., Liu, H., Chen, B., Wu, S.: Automatic target recognition based on SAR images and Two- Stage 2D-PCA features. Dianzi Yu Xinxi Xuebao/J. Elect. Inform. Technol. 30(7), 1722–1726 (2007)

  57. Mrinalini, S., Abinayalakshmi, N. S., Kumar, C. V.: Wavelet feature based SVM and NAIVE BAYES classification of glaucomatous images using PCA and Gabor filter. In: Proceedings of the 2016 10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, pp. 1–5 (2016). doi: https://doi.org/10.1109/ISCO.2016.7726898.

  58. Annu, N., Justin, J.: Classification of Glaucoma Images using Wavelet based Energy Features and PCA (2013)

  59. Dey, A., Bandyopadhyay, S.: Automated Glaucoma detection using support vector machine classification method. Br. J. Med. Med. Res. 11: 1–12. https://doi.org/10.9734/BJMMR/2016/19617 (2016)

  60. Deepak, K. S., Jain, M., Joshi, G. D., Sivaswamy, J.: Motion pattern-based image features for glaucoma detection from retinal images. In: Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing (pp. 1–8) (2012)

  61. Bock, R., Meier, J., Nyúl, L.G., Hornegger, J., Michelson, G.: Glaucoma risk index: automated glaucoma detection from color fundus images. Med. Image Anal. 14(3), 471–481 (2010)

    Article  Google Scholar 

  62. Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2), 246–254 (2004)

    Article  Google Scholar 

  63. Sagar, A. V., Balasubramanian, S., Chandrasekaran, V.: Automatic detection of anatomical structures in digital fundus retinal images. In MVA (pp. 483–486) (2007)

  64. Nyúl, L. G.: Retinal image analysis for automated glaucoma risk evaluation. In: MIPPR 2009: Medical Imaging, Parallel Processing of Images, and Optimization Techniques (Vol. 7497, p. 74971C). International Society for Optics and Photonics (2009)

  65. Morejon, A., Mayo-Iscar, A., Martin, R., Ussa, F.: Development of a new algorithm based on FDT Matrix perimetry and SD-OCT to improve early glaucoma detection in primary care. Clin. Ophthalmol. (Auckland, NZ), 13, 33 (2019)

  66. Xiong, L., Li, H., Zheng, Y.: Automatic detection of glaucoma in retinal images. In: Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications. IEEE, (2014)

  67. Rajan, A., Ramesh, G.: P, Glaucomatous image classification based on PCA using optical coherence tomography images. Int. J. Appl. Eng. Res. 10(17), 1–5 (2015)

    Google Scholar 

  68. Chan, Y.M., Ng, E.Y.K., Jahmunah, V., Wei Koh, J.E., Lih, O.S., Wei Leon, L.Y., Acharya, U.R.: Automated detection of glaucoma using optical coherence tomography angiogram images. Comput. Biol. Med. 115, 103483 (2019). https://doi.org/10.1016/j.compbiomed.2019.103483

    Article  Google Scholar 

  69. Chakravarty, A., and Sivaswamy, J.: Glaucoma classification with a fusion of segmentation and image-based features. In: Proceedings of the 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, (2016)

  70. Meier, J., et al.: Effects of preprocessing eye fundus images on appearance based glaucoma classification. In: International Conference on Computer Analysis of Images and Patterns. Springer, Berlin, Heidelberg (2007)

  71. Yadav, D., Partha Sarathi, M., Dutta, M.K.: Classification of glaucoma based on texture features using neural networks. In: Proceedings of the 2014 Seventh International Conference on Contemporary Computing (IC3). IEEE, (2014)

  72. Christopher, M., et al.: Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Invest. Ophthalmol. Vis. Sci. 59(7), 2748–2756 (2018)

    Article  Google Scholar 

  73. Morejon, A., et al.: Development of a new algorithm based on FDT Matrix perimetry and SD-OCT to improve early glaucoma detection in primary care. Clin. Ophthalmol. (Auckland, NZ) 13: 33 (2019)

  74. Thangaraj, V., Natarajan, V.: Glaucoma diagnosis using support vector machine. In: Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE (2017)

  75. Acharya, U.R., et al.: Decision support system for the glaucoma using Gabor transformation. Biomed. Signal Process. Control 15, 18–26 (2015)

    Article  Google Scholar 

  76. Parul, S.N.: A study on retinal disease classification and filteration approaches. Int. J. Comput. Sci. Mob. Comput. 4(5), 158–165 (2015)

    Google Scholar 

  77. Kumar, A., Gaur, A.K., Srivastava, M.: A segment based technique for detecting exudate from retinal fundus image. Proc. Technol. 6, 1–9 (2012)

    Article  Google Scholar 

  78. Kim, P.Y., et al.: Novel fractal feature-based multiclass glaucoma detection and progression prediction. IEEE J. Biomed. Health Inform. 17(2), 269–276 (2013)

    Article  Google Scholar 

  79. Septiarini, A., et al.: Automatic glaucoma detection method applying a statistical approach to fundus images. Healthcare Inform. Res. 24(1), 53–60 (2018)

    Article  Google Scholar 

  80. Li, A., et al.: Integrating holistic and local deep features for glaucoma classification. In: Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2016)

  81. Samanta, S., et al.: Haralick features based automated glaucoma classification using back propagation neural network. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Springer, Cham, (2015)

  82. Gómez-Valverde, J.J., et al.: Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed. Opt. Exp. 10(2), 892–913 (2019)

    Article  Google Scholar 

  83. Thakur, N., Juneja, M.: Classification of glaucoma using hybrid features with machine learning approaches. Biomed. Signal Process. Control 62, 102137 (2020)

    Article  Google Scholar 

  84. Parashar, D., Agrawal, D.K.: Automated classification of glaucoma stages using flexible analytic wavelet transform from retinal fundus images. IEEE Sens. J. 20(21), 12885–12894 (2020)

    Article  Google Scholar 

  85. Serener, A., Serte, S.: Transfer learning for early and advanced glaucoma detection with convolutional neural networks. In: Proceedings of the 2019 Medical technologies congress (TIPTEKNO). IEEE, (2019)

  86. Cerentinia, A., et al.: Automatic identification of glaucoma sing deep learning methods. In: Proceedings of the 16th World Congress Medical Health Information Precision Healthcare Through Information (MEDINFO). Vol. 245. 2018.

  87. Aamir, M., et al.: An adoptive threshold-based multi-level deep convolutional neural network for glaucoma eye disease detection and classification. Diagnostics 10(8), 602 (2020)

    Article  Google Scholar 

  88. Raghavendra, U., et al.: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inform. Sci. 441, 41–49 (2018)

    Article  MathSciNet  Google Scholar 

  89. Serte, S., Serener, A.: A generalized deep learning model for glaucoma detection. In: Proceedings of the 2019 3rd International symposium on multidisciplinary studies and innovative technologies (ISMSIT). IEEE, (2019)

  90. Hemelings, R., et al.: Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning. Acta Ophthalmol. 98(1), e94–e100 (2020)

    Article  Google Scholar 

  91. Phasuk, S., et al.: Automated glaucoma screening from retinal fundus image using deep learning. In: Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, (2019)

  92. Raghavendra, U., et al.: A two layer sparse autoencoder for glaucoma identification with fundus images. J. Med. Syst. 43(9), 1–9 (2019)

    Article  Google Scholar 

  93. Dey, A., Dey, K.N.: Automated glaucoma detection from fundus images of eye using statistical feature extraction methods and support vector machine classification. In: Industry Interactive Innovations in Science, Engineering and Technology. Springer, Singapore, pp 511–521 (2018)

  94. de Moura Lima, A.C., et al.: Glaucoma diagnosis over eye fundus image through deep features. In: Proceedings of the 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, (2018)

  95. Goutami Eye Institute. 1, RV Nagar, Korukonda Road, Rajahmundry – 533105, A.P, India, Website: www.goutami.org .

Download references

Acknowledgements

The fundus images used in this paper for the comparative study were collected from the Goutami Eye Institute, Rajamahendravaram-533105, Andhra Pradesh, India. We would like to express our deep and sincere gratitude to Dr. Y. Srinivas Reddy, M.S. (Ophthal), and Dr. A. Prasanth Kumar, M.S. (Ophthal), for providing corresponding information and the real fundus images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Krishna Santosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosh, N.K., Barpanda, S.S. Wavelet and PCA-based glaucoma classification through novel methodological enhanced retinal images. Machine Vision and Applications 33, 11 (2022). https://doi.org/10.1007/s00138-021-01263-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-021-01263-w

Keywords

Navigation