Abstract
This paper is focused on the proposal and verification of the RGBD mapping system for a small, low-cost mobile robot. The solution's requested properties were easy to replicate and easy to extend for further development on commonly available personal computers. The proposed solution is based on a Kinect sensor. Furthermore, 14 feature detectors were evaluated, and an ORB detector was chosen for the final implementation. In the image, pre-processing CLAHE filter was applied. Post-processing used the modification of the RANSAC method. The final solution proves a globally consistent SLAM based on an RGBD sensor. The article also presents research, which suggests a parallelization scheme of the computational process using a multi-core CPU to achieve real-time processing.
Similar content being viewed by others
References
Beňo, P.: Processing data from sensor Kinect for purpose of creating 3D map of environment. Thesis, Slovak University of Technology, Bratislava, Slovakia (2013)
Beňo, P., et al.: 3d map reconstruction with sensor Kinect: Searching for solution applicable to small mobile robots. In: 2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), pp. 1–6. IEEE (2014)
Engelhard, N., et al.: Real-time 3D visual SLAM with a hand-held RGB-D camera. In: Proceedings of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden, pp. 1–15 (2011).
Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568 (2011)
Besl, P.J., Mckay, N.D. Method for registration of 3-D shapes. In: Sensor fusion IV: Control Paradigms and Data Structures, pp. 586–606. International Society for Optics and Photonics (1992)
Chen, Y., Medioni, G.G.: Object modeling by registration of multiple range images. Image Vision Comput. 10(3), 145–155 (1992)
Grisetti, G., et al. Hierarchical optimization on manifolds for online 2D and 3D mapping. In: 2010 IEEE International Conference on Robotics and Automation, pp. 273–278. IEEE (2010)
Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 303–312 (1996)
Roth, S.D.: Ray casting for modeling solids. Comput. Graph. Image Process. 18(2), 109–144 (1982)
Pirovano, M.: Kinfu–an open source implementation of Kinect Fusion+ case study: implementing a 3D scanner with PCL. Project Assignment (2012)
Roth, H., Vona, M.: Moving volume KinectFusion. In: BMVC, pp. 1–11 (2012)
Beno, P., et al.: Using octree maps and RGBD cameras to perform mapping and A* navigation. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 66–72. IEEE (2016)
Ketcham, D.J., Lowe, R.W., Weber, J.W.: Image Enhancement Techniques for Cockpit Displays. Hughes Aircraft Co Culver City Ca Display Systems Lab (1974).
Petrou, M.M.P., Petrou, C.: Image Processing: The Fundamentals. Wiley, New York (2010)
Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)
International Color Consortium, et al.: Image technology colour management-Architecture, profile format, and data structure. Specification ICC. 1: 2004–10 (Profile version 4.2. 0.0) (2004)
Andrews, G.R.: Concurrent Programming: Principles and Practice. Benjamin/Cummings Publishing Company, San Francisco (1991)
Tuytelaars, T., et al.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)
Tareen, S.A.K., Saleem, Z.: A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–10. IEEE (2018)
Işik, Ş: A comparative evaluation of well-known feature detectors and descriptors. Int. J. Appl. Math. Electron. Comput. 3(1), 1–6 (2014)
Pieropan, A., et al.: Feature descriptors for tracking by detection: a benchmark. arXiv preprint arXiv:1607.06178 (2016)
Roos, D.R., et al.: Comparing ORB and AKAZE for visual odometry of unmanned aerial vehicles (2015)
Kostusiak, A.: The comparison of keypoint detectors and descriptors for registration of RGB-D data. In: International Conference on Automation, pp. 609–622. Springer, Cham (2016)
Rublee, E., et al.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)
Alcantarilla, P.F., Solutions, T.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell. 34(7), 1281–1298 (2011)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)
Hornung, A., et al.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)
Rusu, R.B., Cousins, S.: 3d is here: point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4. IEEE (2011)
Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: ACM SIGGRAPH 2008 papers, pp. 1–10 (2008)
Eade, E., Drummond, T.: Unified loop closing and recovery for real time monocular SLAM. In: BMVC, p 136 (2008)
Labbe, M., Michaud, F. Online global loop closure detection for large-scale multi-session graph-based SLAM. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014. p. 2661–2666.
Kramer, J., et al.: Hacking the Kinect. Apress, New York (2012)
Beňo, P.: Kinect visual odometry mapping. Slovak University of Technology, 30 6 2018. https://github.com/najlepsiwebdesigner/kinect-vo-mapping.
Beňo, P.: NCR hallway. https://www.youtube.com/watch?v=Omnc3xQXTes
Beňo, P.: NCR. https://www.youtube.com/watch?v=FEhZZlaiM-0
Acknowledgements
This research was supported by the projects VEGA 1/0775/20, APVV-17-0214, and VEGA 1/0754/19.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Beňo, P., Duchoň, F., Hubinský, P. et al. RGBD mapping solution for low-cost robot. Machine Vision and Applications 33, 21 (2022). https://doi.org/10.1007/s00138-022-01275-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-022-01275-0