Skip to main content

RGBD mapping solution for low-cost robot

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper is focused on the proposal and verification of the RGBD mapping system for a small, low-cost mobile robot. The solution's requested properties were easy to replicate and easy to extend for further development on commonly available personal computers. The proposed solution is based on a Kinect sensor. Furthermore, 14 feature detectors were evaluated, and an ORB detector was chosen for the final implementation. In the image, pre-processing CLAHE filter was applied. Post-processing used the modification of the RANSAC method. The final solution proves a globally consistent SLAM based on an RGBD sensor. The article also presents research, which suggests a parallelization scheme of the computational process using a multi-core CPU to achieve real-time processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Beňo, P.: Processing data from sensor Kinect for purpose of creating 3D map of environment. Thesis, Slovak University of Technology, Bratislava, Slovakia (2013)

  2. Beňo, P., et al.: 3d map reconstruction with sensor Kinect: Searching for solution applicable to small mobile robots. In: 2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), pp. 1–6. IEEE (2014)

  3. Engelhard, N., et al.: Real-time 3D visual SLAM with a hand-held RGB-D camera. In: Proceedings of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden, pp. 1–15 (2011).

  4. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568 (2011)

  5. Besl, P.J., Mckay, N.D. Method for registration of 3-D shapes. In: Sensor fusion IV: Control Paradigms and Data Structures, pp. 586–606. International Society for Optics and Photonics (1992)

  6. Chen, Y., Medioni, G.G.: Object modeling by registration of multiple range images. Image Vision Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  7. Grisetti, G., et al. Hierarchical optimization on manifolds for online 2D and 3D mapping. In: 2010 IEEE International Conference on Robotics and Automation, pp. 273–278. IEEE (2010)

  8. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 303–312 (1996)

  9. Roth, S.D.: Ray casting for modeling solids. Comput. Graph. Image Process. 18(2), 109–144 (1982)

    Article  Google Scholar 

  10. Pirovano, M.: Kinfu–an open source implementation of Kinect Fusion+ case study: implementing a 3D scanner with PCL. Project Assignment (2012)

  11. Roth, H., Vona, M.: Moving volume KinectFusion. In: BMVC, pp. 1–11 (2012)

  12. Beno, P., et al.: Using octree maps and RGBD cameras to perform mapping and A* navigation. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 66–72. IEEE (2016)

  13. Ketcham, D.J., Lowe, R.W., Weber, J.W.: Image Enhancement Techniques for Cockpit Displays. Hughes Aircraft Co Culver City Ca Display Systems Lab (1974).

  14. Petrou, M.M.P., Petrou, C.: Image Processing: The Fundamentals. Wiley, New York (2010)

    Book  Google Scholar 

  15. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)

    Article  Google Scholar 

  16. International Color Consortium, et al.: Image technology colour management-Architecture, profile format, and data structure. Specification ICC. 1: 2004–10 (Profile version 4.2. 0.0) (2004)

  17. Andrews, G.R.: Concurrent Programming: Principles and Practice. Benjamin/Cummings Publishing Company, San Francisco (1991)

    MATH  Google Scholar 

  18. Tuytelaars, T., et al.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)

    Article  Google Scholar 

  19. Tareen, S.A.K., Saleem, Z.: A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–10. IEEE (2018)

  20. Işik, Ş: A comparative evaluation of well-known feature detectors and descriptors. Int. J. Appl. Math. Electron. Comput. 3(1), 1–6 (2014)

    Article  Google Scholar 

  21. Pieropan, A., et al.: Feature descriptors for tracking by detection: a benchmark. arXiv preprint arXiv:1607.06178 (2016)

  22. Roos, D.R., et al.: Comparing ORB and AKAZE for visual odometry of unmanned aerial vehicles (2015)

  23. Kostusiak, A.: The comparison of keypoint detectors and descriptors for registration of RGB-D data. In: International Conference on Automation, pp. 609–622. Springer, Cham (2016)

  24. Rublee, E., et al.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

  25. Alcantarilla, P.F., Solutions, T.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell. 34(7), 1281–1298 (2011)

    Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  27. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  28. Hornung, A., et al.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)

    Article  Google Scholar 

  29. Rusu, R.B., Cousins, S.: 3d is here: point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4. IEEE (2011)

  30. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: ACM SIGGRAPH 2008 papers, pp. 1–10 (2008)

  31. Eade, E., Drummond, T.: Unified loop closing and recovery for real time monocular SLAM. In: BMVC, p 136 (2008)

  32. Labbe, M., Michaud, F. Online global loop closure detection for large-scale multi-session graph-based SLAM. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014. p. 2661–2666.

  33. Kramer, J., et al.: Hacking the Kinect. Apress, New York (2012)

    Book  Google Scholar 

  34. Beňo, P.: Kinect visual odometry mapping. Slovak University of Technology, 30 6 2018. https://github.com/najlepsiwebdesigner/kinect-vo-mapping.

  35. Beňo, P.: NCR hallway. https://www.youtube.com/watch?v=Omnc3xQXTes

  36. Beňo, P.: NCR. https://www.youtube.com/watch?v=FEhZZlaiM-0

Download references

Acknowledgements

This research was supported by the projects VEGA 1/0775/20, APVV-17-0214, and VEGA 1/0754/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Beňo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (TXT 0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beňo, P., Duchoň, F., Hubinský, P. et al. RGBD mapping solution for low-cost robot. Machine Vision and Applications 33, 21 (2022). https://doi.org/10.1007/s00138-022-01275-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-022-01275-0

Keywords