Skip to main content
Log in

Randomized nonlinear two-dimensional principal component analysis network for object recognition

  • SPECIAL ISSUE PAPER
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In order to capture nonlinear structures within data and more representational image features, this paper investigates a multi-stage convolutional neural network with predefined filters. The first two stages are the cascaded blocks consisted of random Fourier mapping, two-dimensional principal component analysis and activation operation. Among that, the approximate method based on Gaussian kernel is used to map the original image to random feature space. Subsequently, convolution filters are learned by two-dimensional principal component analysis. Next, the batch normalization and Gaussian linear error unit activation operation are followed. Afterward, the maximum pooling is utilized to further reduce dimensions of intermediate features. With binary hashing and encoding, the statistical histogram will be obtained and served as the higher-order feature of original image. Experiments have been carried out around the task of object recognition, and quantitative results demonstrate the proposed network has significantly advantageous both in terms of accuracy and computational time compared to the existed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53, 5455–5516 (2020)

    Article  Google Scholar 

  2. Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transact. Neural Netw. Learn. Syst. 33(12), 6999–7019 (2022)

    Article  MathSciNet  Google Scholar 

  3. He, K., Zhang., X, Ren, S, Sun J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  5. Sellami, A., Tabbone, S.: Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recogn. 121, 108224 (2022)

    Article  Google Scholar 

  6. Sekhar, A., Biswas, S., Hazra, R., Sunaniya, A.K., Mukherjee, A., Yang, L.: Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system. IEEE J. Biomed. Health Inform. 26(3), 983–991 (2022)

    Article  Google Scholar 

  7. Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017)

    Article  Google Scholar 

  8. Qian, G., Zhang, L.: A simple feedforward convolutional conceptor neural network for classification. Appl. Soft Comput. 70, 1034–1041 (2018)

    Article  Google Scholar 

  9. Chan, T., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: A simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, J., Qiu, S., Zeng, R., Kong, Y., Senhadji, L., Shu, H.: Multilinear principal component analysis network for tensor object classification. IEEE Access 5, 3322–3331 (2017)

    Article  Google Scholar 

  11. Wu, J., Qiu, S., Kong, Y., Jiang, L., Chen, Y., Yang, W., Senhadji, L., Shu, H.: PCANet: An energy perspective. Neurocomputing 313, 271–287 (2018)

    Article  Google Scholar 

  12. Zhou, D., Feng, S.: M3SPCANet: a simple and effective ConvNets with unsupervised predefined filters for face recognition. Eng. Appl. Artif. Intell. 113, 104936 (2022)

    Article  Google Scholar 

  13. Shi, J., Wu, J., Li, Y., Zhang, Q., Ying, S.: Histopathological image classification with color pattern random binary hashing-based PCANet and matrix-form classifier. IEEE J. Biomed. Health Inform. 21(5), 1327–1337 (2017)

    Article  Google Scholar 

  14. Low, C.Y., Teoh, A.B., Toh, K.: Stacking PCANet+: An overly simplified convnets baseline for face recognition. IEEE Signal Process. Lett. 24(11), 1581–1585 (2017)

    Article  Google Scholar 

  15. Zeng, R., Wu, J., Shao, Z., Chen, Y., Chen, B., Senhadji, L., Shu, H.: Color image classification via quaternion principal component analysis network. Neurocomputing 216, 416–428 (2016)

    Article  Google Scholar 

  16. Wu, C., Chen, H., Du, B., Zhang, L.: Unsupervised change detection in multitemporal VHR images based on deep kernel PCA convolutional mapping network. IEEE Transact. Cybern 52(11), 12084–12098 (2022)

    Article  Google Scholar 

  17. Zhang, C., Mei, M., Mei, Z., Zhang, J., Deng, A., Lu, C.: PLDANet: reasonable combination of PCA and LDA convolutional networks. Inter. J. Comput. Communicat. Control 17(2), 4541 (2022)

    Google Scholar 

  18. Song, Y., Chen, C.: MPPCANet: a feedforward learning strategy for few-shot image classification. Pattern Recogn. 113, 107792 (2021)

    Article  Google Scholar 

  19. Qaraei, M., Abbaasi, S., Ghiasi-Shirazi, K.: Randomized non-linear PCA networks. Inf. Sci. 545, 241–253 (2021)

    Article  MathSciNet  Google Scholar 

  20. Xu, Z., Shao, Z., Shang, Y., Li, B., Ding, H., Liu, T.: Fusing structure and color features for cancelable face recognition. Multimed Tools Appl. 80, 14477–14494 (2021)

    Article  Google Scholar 

  21. Yan, D., Wu, X.: 2DPCANet: a deep leaning network for face recognition. Multimed Tools Appl. 77, 12919–12934 (2018)

    Article  Google Scholar 

  22. Li, Y., Wu, X., Kittler, J.: L1–2D2PCANet: a deep learning network for face recognition. J. Electron. Imaging 28(2), 023016 (2019)

    Article  Google Scholar 

  23. Zhao, R., Shi, F.: I2DKPCN: an unsupervised deep learning network. Appl. Intell. 52, 9938–9951 (2022)

    Article  Google Scholar 

  24. Yu, J., Liu, J.: Two-dimensional principal component analysis-based convolutional autoencoder for wafer map defect detection. IEEE Trans. Industr. Electron. 68, 8789–8797 (2020)

    Article  Google Scholar 

  25. Hossain, M. T., Teng S. W., Zhang D., Lim S., Lu G.: Distortion robust image classification using deep convolutional neural network with discrete cosine transform. In: IEEE International Conference on Image Processing, pp. 659–663 (2019)

  26. Haouam, M.Y., Meraoumia, A., Laimeche, L., Bendib, I.: S-DCTNet: security-oriented biometric feature extraction technique. Multimed. Tools Appl. 80, 36059–36091 (2021)

    Article  Google Scholar 

  27. Yang, X., Liu, W., Tao, D., Cheng, J.: Canonical correlation analysis networks for two-view image recognition. Inf. Sci. 385, 338–352 (2017)

    Article  Google Scholar 

  28. Mairal, J., Koniusz, P., Harchaoui, Z., Schmid, C.: Convolutional kernel networks. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 2627–2635 (2014)

  29. Mohammadnia-Qaraei, M.R., Monsefi, R., Ghiasi-Shirazi, K.: Convolutional kernel networks based on a convex combination of cosine kernels. Pattern Recogn. Lett. 116, 127–134 (2018)

    Article  Google Scholar 

  30. Santurkar S., Tsipras D., Ilyas A., Madry A., How does batch normalization help optimization? In: Proceedings of the Conference on Neural Information Processing Systems, pp. 2483–2493 (2018)

  31. Dubey, S.R., Singh, S.K., Chaudhuri, B.B.: Activation functions in deep learning: a comprehensive survey and benchmark. Neurocomputing 503, 92–108 (2022)

    Article  Google Scholar 

  32. [online] Available: https://www.cs.columbia.edu/CAVE/software/softlib/.

  33. Leibe, B., Schiele B., Analyzing appearance and contour based methods for object categorization, In: CVPR, 409 (2003)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61876112, No. 61876037, No. 61601311), Science and technology innovation talent project of Education Department of Henan Province (No. 23HASTIT030) and in part by the National Postdoctoral Program of China (No. 2020M671277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuhong Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Shao, Z., Shang, Y. et al. Randomized nonlinear two-dimensional principal component analysis network for object recognition. Machine Vision and Applications 34, 21 (2023). https://doi.org/10.1007/s00138-023-01371-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-023-01371-9

Keywords

Navigation