Skip to main content
Log in

A deep Retinex network for underwater low-light image enhancement

  • Research
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Underwater images suffer from color cast and low contrast due to the light absorption and scattering. Especially when natural light is not sufficient, large dark areas appear in the captured image, making it impossible to understand the image content. To address this issue, we propose an underwater low-light enhancement method based on Retinex theory. Our model is an end-to-end trainable. The decomposition network decomposes the raw image into reflectance and illumination according to Retinex theory. In the reflectance enhancement network, cross-residual blocks and dense connections can improve the efficiency of feature utilization and the hybrid attention concentrate on the regions of interest in feature maps from different perspectives. The illumination adjustment network utilizes adaptive frequency convolutional blocks to generate additional band information, which reconstructs the more natural illumination. In order to preserve the color consistency of the enhanced image with the reference image, we project the HSV space into the Cartesian coordinate system and use the Euclidean distance as the color cast loss to constrain the enhancement network. Qualitative and quantitative evaluations on different underwater datasets indicate that our method has the excellent performance and can achieve delightful visual enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

not applicable

References

  1. Rahman, Z., Aamir, M., Ali, Z., Saudagar, A.K.J., AlTameem, A., Muhammad, K.: Efficient contrast adjustment and fusion method for underexposed images in industrial cyber-physical systems. IEEE Syst. J. (2023). https://doi.org/10.1109/JSYST.2023.3262593

    Article  Google Scholar 

  2. Rahman, Z., Ali, Z., Khan, I., Uddin, M.I., Guan, Y., Hu, Z.: Diverse image enhancer for complex underexposed image. J. Electron. Imaging 31(4), 041213–041213 (2022)

    Article  Google Scholar 

  3. Guo, X., Li, Y., Ling, H.: Lime: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rahman, Z., Yi-Fei, P., Aamir, M., Wali, S., Guan, Y.: Efficient image enhancement model for correcting uneven illumination images. IEEE Access 8, 109038–109053 (2020)

    Article  Google Scholar 

  5. Shi, Z., Zhu, M.M., Guo, B., Zhao, M., Zhang, C.: Nighttime low illumination image enhancement with single image using bright/dark channel prior. EURASIP J. Image Video Process. 2018, 1–15 (2018)

    Article  Google Scholar 

  6. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  7. Zhang, W., Li, G., Ying, Z.: A new underwater image enhancing method via color correction and illumination adjustment. In: IEEE Visual Communications and Image Processing (VCIP) (2017), pp. 1–4. IEEE (2017)

  8. Zhou, J., Zhang, D., Zhang, W.: Multiscale fusion method for the enhancement of low-light underwater images. Math. Probl. Eng. 2020, 1–15 (2020)

    Google Scholar 

  9. Liu, X., Ma, W., Ma, X., Wang, J.: LAE-Net: a locally-adaptive embedding network for low-light image enhancement. Pattern Recogn. 133, 109039 (2023)

    Article  Google Scholar 

  10. Li, C., Anwar, S., Hou, J., Cong, R., Guo, C., Ren, W.: Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans. Image Process. 30, 4985–5000 (2021)

    Article  Google Scholar 

  11. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

  12. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020)

    Article  Google Scholar 

  13. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018)

  14. Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., Tao, D.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)

    Article  MATH  Google Scholar 

  15. Islam, M.J., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 5(2), 3227–3234 (2020)

    Article  Google Scholar 

  16. Hitam, M.S., Awalludin, E.A., Yussof, W.N.J.H.W., Bachok, Z.: Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In: 2013 International Conference on Computer Applications Technology (ICCAT), pp. 1–5. IEEE (2013)

  17. Singh, K., Kapoor, R., Sinha, S.K.: Enhancement of low exposure images via recursive histogram equalization algorithms. Optik 126(20), 2619–2625 (2015)

    Article  Google Scholar 

  18. Bai, L., Zhang, W., Pan, X., Zhao, C.: Underwater image enhancement based on global and local equalization of histogram and dual-image multi-scale fusion. IEEE Access 8, 128973–128990 (2020)

    Article  Google Scholar 

  19. Zhou, J., Wei, X., Shi, J., Chu, W., Zhang, W.: Underwater image enhancement method with light scattering characteristics. Comput. Electr. Eng. 100, 107898 (2022)

    Article  Google Scholar 

  20. Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X.-P., Ding, X.: A retinex-based enhancing approach for single underwater image. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4572–4576. IEEE (2014)

  21. Rahman, Z., Bhutto, J.A., Aamir, M., Dayo, Z.A., Guan, Y.: Exploring a radically new exponential retinex model for multi-task environments. J. King Saud Univ. Comput. Inf. Sci. 35(7), 101635 (2023)

    Google Scholar 

  22. Zhuang, P., Ding, X.: Underwater image enhancement using an edge-preserving filtering retinex algorithm. Multimedia Tools Appl. 79, 17257–17277 (2020)

    Article  Google Scholar 

  23. Ghani, A.S.A.: Image contrast enhancement using an integration of recursive-overlapped contrast limited adaptive histogram specification and dual-image wavelet fusion for the high visibility of deep underwater image. Ocean Eng. 162, 224–238 (2018)

    Article  Google Scholar 

  24. Hou, G.-J., Luan, X., Song, D.-L.: A study on color model selection for underwater color image preprocessing. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1456–1461. IEEE (2015)

  25. Rahman, Z., Pu, Y.-F., Aamir, M., Wali, S.: Structure revealing of low-light images using wavelet transform based on fractional-order denoising and multiscale decomposition. Vis. Comput. 37(5), 865–880 (2021)

    Article  Google Scholar 

  26. Drews, P., Nascimento, E., Moraes, F., Botelho, S., Campos, M.: Transmission estimation in underwater single images. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 825–830 (2013)

  27. Drews, P.L., Nascimento, E.R., Botelho, S.S., Campos, M.F.M.: Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appl. 36(2), 24–35 (2016)

    Article  Google Scholar 

  28. Yu, H., Li, X., Lou, Q., Lei, C., Liu, Z.: Underwater image enhancement based on DCP and depth transmission map. Multimedia Tools Appl. 79, 20373–20390 (2020)

    Article  Google Scholar 

  29. Berman, D., Levy, D., Avidan, S., Treibitz, T.: Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2822–2837 (2020)

    Google Scholar 

  30. Wang, Y., Liu, H., Chau, L.-P.: Single underwater image restoration using adaptive attenuation-curve prior. IEEE Trans. Circuits Syst. I Regul. Pap. 65(3), 992–1002 (2017)

    Article  Google Scholar 

  31. Wang, Y., Guo, J., Gao, H., Yue, H.: Uiec\(\, \hat{}\) 2-net: CNN-based underwater image enhancement using two color space. Signal Process.: Image Commun. 96, 116250 (2021)

    Google Scholar 

  32. Wu, S., Luo, T., Jiang, G., Yu, M., Xu, H., Zhu, Z., Song, Y.: A two-stage underwater enhancement network based on structure decomposition and characteristics of underwater imaging. IEEE J. Ocean. Eng. 46(4), 1213–1227 (2021)

    Article  Google Scholar 

  33. Liu, S., Fan, H., Lin, S., Wang, Q., Ding, N., Tang, Y.: Adaptive learning attention network for underwater image enhancement. IEEE Robot. Autom. Lett. 7(2), 5326–5333 (2022)

    Article  Google Scholar 

  34. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2017)

    Google Scholar 

  35. Fabbri, C., Islam, M.J., Sattar, J.: Enhancing underwater imagery using generative adversarial networks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7159–7165. IEEE (2018)

  36. Zong, X., Chen, Z., Wang, D.: Local-CycleGAN: a general end-to-end network for visual enhancement in complex deep-water environment. Appl. Intell. 51, 1947–1958 (2021)

    Article  Google Scholar 

  37. Peng, L., Zhu, C., Bian, L.: U-shape transformer for underwater image enhancement. In: Computer Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II, pp. 290–307. Springer (2023)

  38. Porto Marques, T., Branzan Albu, A., Hoeberechts, M.: A contrast-guided approach for the enhancement of low-lighting underwater images. J. Imaging 5(10), 79 (2019)

    Article  Google Scholar 

  39. Marques, T.P., Albu, A.B.: L2uwe: A framework for the efficient enhancement of low-light underwater images using local contrast and multi-scale fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 538–539 (2020)

  40. Zhao, W., Rong, S., Ma, J., He, B.: Nonuniform illumination correction for underwater images through a pseudo-Siamese network. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 1329–1335. IEEE (2022)

  41. Ji, T.-L., Sundareshan, M.K., Roehrig, H.: Adaptive image contrast enhancement based on human visual properties. IEEE Trans. Med. Imaging 13(4), 573–586 (1994). https://doi.org/10.1109/42.363111

  42. Panetta, Karen A., Wharton, Eric J., Agaian, Sos S.: Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 38(1), 174–188 (2008). https://doi.org/10.1109/TSMCB.2007.909440

  43. Luo, M.R., Cui, G., Rigg, B.: The development of the CIE 2000 colour-difference formula: Ciede2000. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur 26(5), 340–350 (2001)

  44. Lv, F., Liu, B., Lu, F.: Fast enhancement for non-uniform illumination images using light-weight CNNs. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1450–1458 (2020)

  45. Lin, S., Tang, F., Dong, W., Pan, X., Xu, C.: SMNet: synchronous multi-scale low light enhancement network with local and global concern. IEEE Trans. Multimedia (2023). https://doi.org/10.1109/TMM.2023.3254141

    Article  Google Scholar 

  46. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part II 14, pp. 694–711. Springer, Berlin (2016)

  47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  48. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

  49. Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–88. IEEE (2012)

  50. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 41(3), 541–551 (2015)

    Article  Google Scholar 

  51. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

  52. Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities of China (No. N2216010), the ’Jie Bang Gua Shuai’ Science and Technology Major Project of Liaoning Province in 2022 (No. 2022JH1/10400025) and the National Key Research and Development Program of China (No. 2018YFB1702000).

Author information

Authors and Affiliations

Authors

Contributions

Kai Ji wrote the manuscript; Weimin Lei and Wei Zhang provided suggestions for the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Weimin Lei.

Ethics declarations

Ethical approval

not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, K., Lei, W. & Zhang, W. A deep Retinex network for underwater low-light image enhancement. Machine Vision and Applications 34, 122 (2023). https://doi.org/10.1007/s00138-023-01478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-023-01478-z

Keywords

Navigation