Abstract
Through the application of machine learning techniques, this paper aims to estimate the importance of messages with ideological load during the elections held in Spain on May 24th, 2015 posted by Twitter’s users, as well as other variables associated with the publication of these types of messages. Our study collected and analysed 24,900 tweets associated to two of the main trending topics’ hashtags (#24M and #Elections2015) used in the election day and build a predictive model to infer the ideological orientation for the messages which made use of these hashtags during Election Day. This approach allows us to classify the ideological orientation of all collected tweets, instead of only tweets that explicitly express their ideological or partisan preferences in the messages. Using the ideological orientation for all tweets predicted by our model, it was possible to identify how messages with a defined ideological load were pushed forward by users with leftist tendencies. We also observed a relationship between these messages and the partisan orientation of those who published them.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
In fivefold cross validation, the training set is split in five folds of similar length. Four folds are used for training the model, and the remaining fold for testing. The process is repeated five times, and a different fold is used for testing in each repetition.
References
Anduiza E et al (2013) Mobilization through online social networks: the political protest of the indignados in Spain. Inf Commun Soc. doi:10.1080/1369118X.2013.808360
Aragón P et al (2013) Communication dynamics in Twitter during political campaigns: the case of the 2011 Spanish national election. Policy Internet. doi:10.1002/1944-2866
Barberá P, Rivero G (2014) Understanding the political representativeness of Twitter Users. Soc Sci Comput Rev. doi:10.1177/0894439314558836
Batrinka B, Treleaven PC (2015) Social media analytics: a survey of techniques, tools and platforms. AI Soc. doi:10.1007/s00146-014-0549-4
Bird S et al (2009) Natural language processing with Python. O′Reilly Media, Boston
Breiman L (2001) Random forests. Mach Learn. doi:10.1023/A:1010933404324
Calderón A, Espinosa A (2006) Ideología política, valores culturales y miedo a la muerte: su impacto después de los atentados del 11 de Marzo. Psicología Política 32:33–38
Canel MJ (1999) Comunicación política: técnicas y estrategias para la sociedad de la información. Tecnos, Madrid
Casero-Ripollés A, Feenstra R (2012) The 15-M movement and the new media: a case study of how new themes were introduced into spanish political discourse. Media Int Aust. doi:10.1177/1329878X1214400111
CIS (2014) Barómetro de Octubre 2014, http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/3040_3059/3041/es3041mar.pdf. Accessed 15 dec 2016
CIS (2015) Barómetro de Enero 2015. http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/3040_3059/3050/es3050mar.pdf. Accessed 15 dec 2016
Colleoni E et al (2014) Echo chamber or public sphere? predicting policital orientation and measuring political hemophily in Twitter using big data. J Commun. doi:10.1111/jcom.12084
Congosto M et al (2011) Twitter y política: información, opinión y ¿predicción? Cuadernos de comunicación Evoca 4:11–16
Cordero G (2008) ¿ Qué es ideología? El caso español. Universidad Autónoma de Madrid, Madrid
Del Fresno M et al (2015) Unveiling climates of opinion through social media mining and social network analysis in Twitter. The case of common core state standards. Redes. Revista hispana para el análisis de redes sociales. doi:10.5565/rev/redes.531
Deltell L (2012) Estrategias de comunicación política en las redes sociales durante la campaña electoral del 2011 en España: el caso de eQuo. Asociación de Sociología Madrileña, Madrid
Deltell L et al (2013) Predicción de tendencia política por Twitter: Elecciones Andaluzas 2012. Ambitos Revista internacional de comunicación 22:91–100
Denzau A, North D (1994) Shared mental models: ideologies and institutions. Kyklos. doi:10.1111/j.1467-6435.1994.tb02246.x
Elmer G (2012) Live research: Twittering an election debate. New Media Soc. doi:10.1177/1461444812457328
Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambrige Press University, Cambrige
Fominaya CF (2014) Social movements and globalization: how protests, occupations and uprisings are changing the world. Palgrave Macmillan, New York
Gimpel K et al (2011) Part-of-speech tagging for Twitter: annotation, features, and experiments’, in Association for Computational Linguistics. Association for Computational Linguistics, Baltimore
Gruzd A, Roy J (2014) Investigating political polarization on Twitter: a Canadian perspective. Policy Internet. doi:10.1002/1944-2866
Iyyer M et al (2014) Political ideology detection using recursive neural networks. Association for Computational Linguistics, Baltimore
Jost JT (2006) The end of the end of ideology. Am Psychol. doi:10.1037/0003-066X.61.7.651
Koc-Michalska K et al (2014) Poland’s 2011 online election campaign: new tools, new professionalism, new ways to win votes. J Inf Technol Politics. doi:10.1080/19331681.2014.899176
Levy Paul S, Lemeshow S (2013) Sampling of populations: methods and applications. John Wiley & Sons, New Jersey
López TR et al (2013) The political communication in the “Social media”: comparative analysis of the campaign of Barack Obama and Hillary Clinton in 2008. Historia y Comun Soc. doi:10.5209/rev_HICS.2013.v18.44367
Margolis M, Resnick D (2000) Politics as usual: the cyberspace “Revolution”. SAGE Publications, Thousand Oaks
Marlin-Bennett R (2011) I hear America tweeting and other themes for a virtual polis: rethinking democracy in the global infotech age. J Inf Technol Politics. doi:10.1080/19331681.2011.532675
Mayer-Schönberger V, Cukier K (2013) Big data: a revolution that will transform how we live, work, and think. Mariner Books, Boston
Oshiro TM, Perez PS, Baranauskas JA (2012) How many trees in a random forest? In: 8th International Conference on Machine Learning and Data Mining (MLDM’2012). Volume 7376 of Lecture Notes in Computer Science pp 154–168
Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res. doi:10.1016/j.patcog.2011.04.006
Puddington A (2013) Freedom in the World 2013: Democratic Breakthroughs in the Balance. Freedom House, Washington. http://www.refworld.org/docid/5194c7de4.html. Accessed 21 Jun 2016
Quinlan JR (1986) Induction of decision trees. Mach Learn. doi:10.1023/A:1022643204877
Robins D, Frati FE, Alvarez J, Texier J (2016) Balotage in Argentina 2015, a sentiment analysis of tweets. http://arxiv.org/abs/1611.02337. Accessed 21 Jun 2016
Rodríguez R, Ureña D (2011) Diez razones para el uso de Twitter como herramienta en la comunicación política y electoral. Comunicación y pluralismo 10:89–107
Salton G et al (1975) A vector space model for automatic indexing. Commun ACM. doi:10.1145/361219.361220
Sánchez G, Sánchez R (2009) Ideological orientations of citizens in Europe. Papel Politico 14:645–667
Segerberg A, Bennett WL (2011) Social media and the organization of collective action: using Twitter to explore the ecologies of two climate change protests. Commun Rev. doi:10.1080/10714421.2011
Tayal DK, Yadav SK (2016) Sentiment analysis on social campaign “Swachh Bharat Abhiyan” using unigram method. AI & Soc. doi:10.1007/s00146-016-0672-5
Wagner KM, Gainous J (2013) Digital uprising: the internet revolution in the Middle East. J Inf Technol Politics. doi:10.1080/19331681.2013.778802
Wu HC et al (2008) Interpreting TF-IDF term weights as making relevance decisions. ACM Trans Inf Syst. doi:10.1145/1361684.1361686
Xu G, Li L (2013) Social media mining and social network analysis: emerging research, information. Science reference. IGI Global, Hershey
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Prati, R.C., Said-Hung, E. Predicting the ideological orientation during the Spanish 24M elections in Twitter using machine learning. AI & Soc 34, 589–598 (2019). https://doi.org/10.1007/s00146-017-0761-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00146-017-0761-0