Skip to main content
Log in

Decision methods for linearly ordered Heyting algebras

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The decision problem for positively quantified formulae in the theory of linearly ordered Heyting algebras is known, as a special case of work of Kreisel, to be solvable; a simple solution is here presented, inspired by related ideas in Gödel-Dummett logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Log. J. IGPL 7, 447–480 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avron, A., Konikowska, B.: Decomposition proof systems for Gödel-Dummett logics. Stud. Log. 69, 197–219 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baaz, M., Ciabattoni, A., Fermüller, C.: Hypersequent calculi for Gödel logics—a survey. J. Log. Comput. 13, 1–27 (2003)

    Article  MathSciNet  Google Scholar 

  4. Baaz, M., Ciabattoni, A., Fermüller, C.: Sequent of relations calculi: a framework for analytic deduction in many-valued logics. In [15], 152–175

  5. Baaz, M., Veith, H.: An axiomatization of quantified propositional Gödel logic using the Takeuti-Titani rule. In [7], 91–104

  6. Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press, 1974

  7. Buss, S., Hajek, P., Pudlak, P. (eds) Logic Colloquium '98. Lect. Notes Log. 13 (2000)

  8. Calude, C., Ishihara, H. (eds), Constructivity, computability, and logic. J. UCS 11 (2005)

  9. Corsi, G.: Semantic trees for Dummett's logic LC. Stud. Log. 45, 199–206 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dummett, M.A.H.: A propositional calculus with a denumerable matrix. J. Symb. Log. 24, 97–106 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log. 57, 795–807 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dyckhoff, R.: A deterministic terminating calculus for Gödel-Dummett logic. Log. J. IGPL 7, 319–326 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ehrenfeucht, A.: Decidability of the theory of linear ordering relation. Notices Amer. Math. Soc. 6, 268–269 (1959)

    Google Scholar 

  14. Fiorino, G.: Space-efficient decision procedures for three interpolable propositional intermediate logics. J. Log. Comput. 12, 955–992 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fitting, M., Orlowska, E. (eds), Beyond two: Theory and applications of multiple-valued logics. Physica Verlag, Heidelberg, 2003

  16. Gentzen, G.: Untersuchungen über das logische Schliessen I, II. Math. Z. 39, 176–210 & 405–431 (1935)

    Article  MathSciNet  Google Scholar 

  17. Haiman, M.: Proof theory for linear lattices. Adv. Math. 58, 209–242 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. J. Symb. Log. 34, 395–408 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hudelmaier, J.: An O(n log(n)) decision procedure for intuitionistic propositional logic. J. Log. Comput. 3, 63–75 (1993)

    MATH  MathSciNet  Google Scholar 

  20. Janiczak, A.: Undecidability of some simple formalized theories. Fund. Math. 40, 131–139 (1953)

    MATH  MathSciNet  Google Scholar 

  21. Jipsen, P., Tsinakis, C.: A survey of residuated lattices. in [26], 19–56

  22. Kreisel, G.: Review of [20]. Math. Rev. 15, 669–670 (1954)

    Google Scholar 

  23. Larchey-Wendling, D.: Combining proof-search and counter-model construction for deciding Gödel-Dummett logic. CADE (Proceedings), Lect. Notes. Comput. Sci. 2392, 94–110 (2002)

    MATH  MathSciNet  Google Scholar 

  24. Larchey-Wendling, D.: Counter-model search in Gödel-Dummett logics. International Joint Conference on Automated Reasoning (Proceedings), Lect. Notes. Comput. Sci. 3097, 274–288 (2004)

    MathSciNet  Google Scholar 

  25. Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fund. Math. 59, 109–116 (1966)

    MATH  MathSciNet  Google Scholar 

  26. Martinez, J. (ed), Ordered Algebraic Structures. Kluwer Academic Publishers, Dordrecht, 2002

  27. Negri, S.: Permutability of rules for linear lattices. in [8]

  28. Negri, S., von Plato, J.: Structural proof theory. Cambridge University Press, Cambridge, 2001

  29. Negri, S., von Plato, J., Coquand, T.: Proof-theoretical analysis of order relations. Arch. Math. Logic 43, 297–309 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Negri, S., von Plato, J.: Proof systems for lattice theory. Math. Struct. Comput. Sci. 14, 507–526 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Okada, M., Terui, K.: The finite model property for various fragments of intuitionistic linear logic. J. Symb. Log. 64, 790–802 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ono, H., Komori, Y.: Logics without the contraction rule. J. Symb. Log. 50, 169–201 (1985)

    Article  MATH  Google Scholar 

  33. von Plato, J.: Skolem's discovery of Gödel-Dummett logic. Stud. Log. 73, 153–157 (2003)

    Article  MATH  Google Scholar 

  34. Tamura, S.: A Gentzen formulation without the cut rule for ortholattices. Kobe J. Math. 5, 133–150 (1988)

    MATH  MathSciNet  Google Scholar 

  35. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. Cambridge University Press, 1996 & 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Negri.

Additional information

Received: April 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyckhoff, R., Negri, S. Decision methods for linearly ordered Heyting algebras. Arch. Math. Logic 45, 411–422 (2006). https://doi.org/10.1007/s00153-005-0321-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-005-0321-z

Key words or phrases

Navigation