Abstract
The decision problem for positively quantified formulae in the theory of linearly ordered Heyting algebras is known, as a special case of work of Kreisel, to be solvable; a simple solution is here presented, inspired by related ideas in Gödel-Dummett logic.
Similar content being viewed by others
References
Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Log. J. IGPL 7, 447–480 (1999)
Avron, A., Konikowska, B.: Decomposition proof systems for Gödel-Dummett logics. Stud. Log. 69, 197–219 (2001)
Baaz, M., Ciabattoni, A., Fermüller, C.: Hypersequent calculi for Gödel logics—a survey. J. Log. Comput. 13, 1–27 (2003)
Baaz, M., Ciabattoni, A., Fermüller, C.: Sequent of relations calculi: a framework for analytic deduction in many-valued logics. In [15], 152–175
Baaz, M., Veith, H.: An axiomatization of quantified propositional Gödel logic using the Takeuti-Titani rule. In [7], 91–104
Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press, 1974
Buss, S., Hajek, P., Pudlak, P. (eds) Logic Colloquium '98. Lect. Notes Log. 13 (2000)
Calude, C., Ishihara, H. (eds), Constructivity, computability, and logic. J. UCS 11 (2005)
Corsi, G.: Semantic trees for Dummett's logic LC. Stud. Log. 45, 199–206 (1986)
Dummett, M.A.H.: A propositional calculus with a denumerable matrix. J. Symb. Log. 24, 97–106 (1959)
Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log. 57, 795–807 (1992)
Dyckhoff, R.: A deterministic terminating calculus for Gödel-Dummett logic. Log. J. IGPL 7, 319–326 (1999)
Ehrenfeucht, A.: Decidability of the theory of linear ordering relation. Notices Amer. Math. Soc. 6, 268–269 (1959)
Fiorino, G.: Space-efficient decision procedures for three interpolable propositional intermediate logics. J. Log. Comput. 12, 955–992 (2002)
Fitting, M., Orlowska, E. (eds), Beyond two: Theory and applications of multiple-valued logics. Physica Verlag, Heidelberg, 2003
Gentzen, G.: Untersuchungen über das logische Schliessen I, II. Math. Z. 39, 176–210 & 405–431 (1935)
Haiman, M.: Proof theory for linear lattices. Adv. Math. 58, 209–242 (1985)
Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. J. Symb. Log. 34, 395–408 (1969)
Hudelmaier, J.: An O(n log(n)) decision procedure for intuitionistic propositional logic. J. Log. Comput. 3, 63–75 (1993)
Janiczak, A.: Undecidability of some simple formalized theories. Fund. Math. 40, 131–139 (1953)
Jipsen, P., Tsinakis, C.: A survey of residuated lattices. in [26], 19–56
Kreisel, G.: Review of [20]. Math. Rev. 15, 669–670 (1954)
Larchey-Wendling, D.: Combining proof-search and counter-model construction for deciding Gödel-Dummett logic. CADE (Proceedings), Lect. Notes. Comput. Sci. 2392, 94–110 (2002)
Larchey-Wendling, D.: Counter-model search in Gödel-Dummett logics. International Joint Conference on Automated Reasoning (Proceedings), Lect. Notes. Comput. Sci. 3097, 274–288 (2004)
Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fund. Math. 59, 109–116 (1966)
Martinez, J. (ed), Ordered Algebraic Structures. Kluwer Academic Publishers, Dordrecht, 2002
Negri, S.: Permutability of rules for linear lattices. in [8]
Negri, S., von Plato, J.: Structural proof theory. Cambridge University Press, Cambridge, 2001
Negri, S., von Plato, J., Coquand, T.: Proof-theoretical analysis of order relations. Arch. Math. Logic 43, 297–309 (2004)
Negri, S., von Plato, J.: Proof systems for lattice theory. Math. Struct. Comput. Sci. 14, 507–526 (2004)
Okada, M., Terui, K.: The finite model property for various fragments of intuitionistic linear logic. J. Symb. Log. 64, 790–802 (1999)
Ono, H., Komori, Y.: Logics without the contraction rule. J. Symb. Log. 50, 169–201 (1985)
von Plato, J.: Skolem's discovery of Gödel-Dummett logic. Stud. Log. 73, 153–157 (2003)
Tamura, S.: A Gentzen formulation without the cut rule for ortholattices. Kobe J. Math. 5, 133–150 (1988)
Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. Cambridge University Press, 1996 & 2000
Author information
Authors and Affiliations
Corresponding author
Additional information
Received: April 2005
Rights and permissions
About this article
Cite this article
Dyckhoff, R., Negri, S. Decision methods for linearly ordered Heyting algebras. Arch. Math. Logic 45, 411–422 (2006). https://doi.org/10.1007/s00153-005-0321-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-005-0321-z