Skip to main content
Log in

Lifting elementary embeddings j: V λV λ

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We describe a fairly general procedure for preserving I3 embeddings j: V λV λ via λ-stage reverse Easton iterated forcings. We use this method to prove that, assuming the consistency of an I3 embedding, V =  HOD is consistent with the theory ZFC + WA where WA is an axiom schema in the language {∈, j} asserting a strong but not inconsistent form of “there is an elementary embedding VV”. This improves upon an earlier result in which consistency was established assuming an I1 embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner J. (1983). Iterated forcing. In: Mathias, A.R.D. (eds) Surveys in Set Theory., pp 1–59. Cambridge University Press, Cambridge

    Google Scholar 

  2. Corazza, P.: Indestructibility of wholeness (in preparation)

  3. Corazza P. (2006). The spectrum of elementary embeddings j: VV. Ann. Pure Appl. Logic 139: 327–399

    Article  MathSciNet  Google Scholar 

  4. Corazza P. (2000). Consistency of V = HOD with the wholeness axiom. Arch. Math. Logic 39: 219–226

    Article  MathSciNet  Google Scholar 

  5. Corazza P. (1999). Laver sequences for extendible and super-almost-huge cardinals. J. Symbolic Logic 64: 963–983

    Article  MathSciNet  Google Scholar 

  6. Corazza P. (2000). The wholeness axiom and Laver sequences. Ann. Pure Appl. Logic 105: 157–260

    Article  MathSciNet  Google Scholar 

  7. Friedman S. (2000). Fine Structure and Class Forcing. Walter de Gruyter, New York

    MATH  Google Scholar 

  8. Hamkins J.D. (2001). The wholeness axioms and V = HOD. Arch. Math. Logic 40: 1–8

    Article  MathSciNet  Google Scholar 

  9. Hamkins J.D. (1994). Fragile measurability. J. Symbolic Logic 59: 262–282

    Article  MathSciNet  Google Scholar 

  10. Jech T. (1978). Set theory. Academic, New York

    Google Scholar 

  11. Kunen K. (1980). Set theory: an introduction to independence proofs. North-Holland Publishing Company, New York

    MATH  Google Scholar 

  12. Kunen K. (1971). Elementary embeddings and infinitary combinatorics. J. Symbolic Logic 36: 407–413

    Article  MathSciNet  Google Scholar 

  13. Menas T. (1976). Consistency results concerning supercompactness. Trans. Am. Math. Soc. 223: 61–91

    Article  MathSciNet  Google Scholar 

  14. Roguski, S.: The theory of the class HOD. In: Set Theory and Hierarchy Theory, Lecture Notes in Mathematics, 619. Springer, Heidelberg (1977)

  15. Zadrożny W. (1983). Iterating ordinal definability. Ann. Pure Appl. Logic 24: 263–310

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Corazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corazza, P. Lifting elementary embeddings j: V λV λ . Arch. Math. Logic 46, 61–72 (2007). https://doi.org/10.1007/s00153-006-0027-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-006-0027-x

Keywords

Mathematics Subject Classification (2000)

Navigation