Skip to main content

Commutative basic algebras and non-associative fuzzy logics

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Several investigations in probability theory and the theory of expert systems show that it is important to search for some reasonable generalizations of fuzzy logics (e.g. Łukasiewicz, Gödel or product logic) having a non-associative conjunction. In the present paper, we offer a non-associative fuzzy logic L CBA having as an equivalent algebraic semantics lattices with section antitone involutions satisfying the contraposition law, so-called commutative basic algebras. The class (variety) CBA of commutative basic algebras was intensively studied in several recent papers and includes the class of MV-algebras. We show that the logic L CBA is very close to the Łukasiewicz one, both having the same finite models, and can be understood as its non-associative generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blok W.J., Pigozzi D.: Algebraizable logics. Mem. AMS 77, 396 (1989)

    MathSciNet  Google Scholar 

  2. Botur, M.: An example of a commutative basic algebra which is not an MV-algebra. Math. Slovaca (to appear)

  3. Botur, M.: Subdirectly irreducible commutative basic algebras are linearly ordered. Algebra Universalis (submitted)

  4. Botur M., Halaš R.: Finite commutative basic algebras are MV-algebras. Mult. Val. Log. Soft Comp. 14(1–2), 69–80 (2008)

    Google Scholar 

  5. Botur M., Halaš R.: Complete commutative basic algebras. Order 24, 89–105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Botur, M., Chajda, I., Halaš R.: Are basic algebras residuated lattices? Soft Comp. doi:10.1007/s00500-009-0399-z

  7. Chajda I., Halaš R.: A basic algebra is an MV-algebra if and only if it is a BCC-algebra. Int. J. Theor. Phys. 47, 261–267 (2008)

    Article  MATH  Google Scholar 

  8. Chajda I., Kolařík M.: An independence of axioms for basic algebras. Soft Comp. 13(1), 41–43 (2009)

    Article  MATH  Google Scholar 

  9. Chajda, I., Halaš, R., Kühr, J.: Multiple Valued Quantum Algebras Algebra Universalis, 28pp. doi:10.1007/s00012-008-2086-9

  10. Chajda, I., Halaš, R., Kühr, J.: Semilattice structures, 228pp. Heldermann Verlag, Lemgo (2007) (ISBN 978-3-88538-230-0)

  11. Chang C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 464–490 (1958)

    Article  Google Scholar 

  12. Cignoli R.L.O., D’Ottaviano M.L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  13. Cintula P.: Weakly implicative (Fuzzy) logics. Arch. Math. Log. 45(6), 673–704 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Durante F., Klement E.P., Mesiar R., Sempi C.: Conjunctors and their residual implicators: characterizations and construction methods. Mediterr. J. Math. 4, 343–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer/Ister Science, Dordrecht/Bratislava (2000)

    MATH  Google Scholar 

  16. Foulis D., Bennett M.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)

    Article  MathSciNet  Google Scholar 

  17. Gispert J., Mundici D.: MV-algebras: a variety for magnitudes with archimedean units. Algebra Univers. 53, 7–43 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  19. Hájek, P., Mesiar, R.: On copulas, quasicopulas and fuzzy logic. Soft Comp. (to appear)

  20. Klement E.P., Kolesárová A.: Extension to copulas and quasicopulas as special 1-Lipschitz aggregation operators. Kybernetika 41, 329–348 (2005)

    MathSciNet  Google Scholar 

  21. Kreinovich V.: Towards more realistic (e.g., non-associative) ‘and’- and ‘or’-operations in fuzzy logic. Soft Comp. 8, 274–280 (2004)

    MATH  Google Scholar 

  22. Nelsen R.B.: Copulas and quasi-copulas: an introduction to their properties and applications. In: Klement, E.P., Mesiar, R. (eds) Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, pp. 391–414. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  23. Nelsen R.B.: An introduction to copulas. Springer, New York (1999)

    MATH  Google Scholar 

  24. Riečanová Z.: Generalization of blocks for D-lattices and latticeordered effect algebras. Int. J. Theor. Phys. 39, 231–237 (2000)

    Article  MATH  Google Scholar 

  25. Ward M., Dilworth R.P.: Residuated lattices. Trans. Am. Math. Soc. 45, 335–354 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yager R.R.: Modelling holistic fuzzy implication using co-copulas. Fuzzy Optim. Decis. Making 5, 207–226 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zimmerman H.H., Zysno P.: Latent connectives in human decision making. Fuzzy Sets Syst. 4, 37–51 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radomír Halaš.

Additional information

This work is supported by the Research and Development Council of the Czech Government via the project MSM6198959214.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botur, M., Halaš, R. Commutative basic algebras and non-associative fuzzy logics. Arch. Math. Logic 48, 243–255 (2009). https://doi.org/10.1007/s00153-009-0125-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-009-0125-7

Keywords

Mathematics Subject Classification (2000)