Skip to main content
Log in

Consistency statements and iterations of computable functions in IΣ1 and PRA

  • Original Article
  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In this paper we will state and prove some comparative theorems concerning PRA and IΣ1. We shall provide a characterization of IΣ1 in terms of PRA and iterations of a class of functions. In particular, we prove that for this class of functions the difference between IΣ1 and PRA is exactly that, where PRA is closed under iterations of these functions, IΣ1 is moreover provably closed under iteration. We will formulate a sufficient condition for a model of PRA to be a model of IΣ1. This condition is used to give a model-theoretic proof of Parsons’ theorem, that is, IΣ1 is Π2-conservative over PRA. We shall also give a purely syntactical proof of Parsons’ theorem. Finally, we show that IΣ1 proves the consistency of PRA on a definable IΣ1-cut. This implies that proofs in IΣ1 can have non-elementary speed up over proofs in PRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avigad J.: Saturated models of universal theories. Ann. Pure Appl. Log. 118(3), 219–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beklemishev L.: Induction rules, reflection principles, and provably recursive functions. Ann. Pure Appl. Log. 85, 193–242 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beklemishev L.: Proof-theoretic analysis by iterated reflection. Arch. Math. Log. 42(6), 515–552 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buss S.: First-order proof theory of arithmetic. In: Buss, S. (eds) Handbook of Proof Theory, pp. 79–148. Elsevier, North-Holland Amsterdam (1998)

    Chapter  Google Scholar 

  5. Ferreira, F.: Yet another proof of Parsons’ theorem (2002). Not yet published

  6. Gaifman, H., Dimitracopoulos, C.: Fragments of Peano’s arithmetic and the MDRP theorem. In: Logic and algorithmic (Zurich, 1980), (Monograph. Enseign. Math., 30), pp. 187–206. University of Genève, Genève (1982)

  7. Hájek P., Pudlák P.: Metamathematics of First Order Arithmetic. Springer, Berlin, Heidelberg, New York (1993)

    MATH  Google Scholar 

  8. Hilbert D., Bernays P.: Grundlagen der Mathematik, Vols I and II, 2d ed. Springer, Berlin (1968)

    Google Scholar 

  9. Ignjatovic, A.: Fragments of first and Second Order Arithmetic and Length of Proofs. Ph.D. thesis, University of California, Berkeley (1990)

  10. Joosten J.: On interpretability in PRA; the closed fragment of the interpretability logic of PRA with a constant for IΣ1. Notre Dame J. Formal Log. 46(2), 127–146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaye R.: Models of Peano Arithmetic. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  12. Mints G.: Quantifier-free and one-quantifier systems. J. Soviet Math. 1, 71–84 (1972) First published in Russian in 1971

    Article  Google Scholar 

  13. Parikh R.: Existence and feasibility in arithmetic. J. Symbolic Log. 36, 494–508 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  14. Parsons C.: On a number-theoretic choice schema and its relation to induction. In: Kino, A., Myhill, J., Vessley, R. (eds) Intuitionism and Proof Theory, pp. 459–473. North Holland, Amsterdam (1970)

    Google Scholar 

  15. Parsons C.: On n-quantifier induction. J. Symbolic Log. 37(3), 466–482 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pudlák P.: On the length of proofs of finitistic consistency statements in first-order theories. In: Paris, J.e.a. (eds) Logic Colloquium ’84, pp. 165–196. North-Holland, Amsterdam (1986)

    Google Scholar 

  17. Schwichtenberg H.: Some applications of cut-elimination. In: Barwise, J. (eds) Handbook of Mathematical Logic, pp. 867–896. North Holland, Amsterdam (1977)

    Chapter  Google Scholar 

  18. Sieg W.: Herbrand analyses. Arch. Math. Log. 30, 409–441 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Simpson S.G.: Subsystems of Second Order Arithmetic. Springer, Berlin (1999)

    MATH  Google Scholar 

  20. Skolem T.: The foundations of elementary arithmetic established by means of the recursive mode of thought, without the use of apparent variables ranging over infinite domains. In: Heijenoort, J.v. (eds) From Frege to Gödel, pp. 302–333. Harvard, Iuniverse (1967)

    Google Scholar 

  21. Tait W.: Finitism. J. Philos. 78, 524–546 (1981)

    Article  Google Scholar 

  22. Takeuti G.: Proof Theory. North-Holland, Amsterdam (1975)

    Google Scholar 

  23. Visser, A.: Notes on IΣ1 (1990?). Unpublished manuscript

  24. Wilkie A., Paris J.: On the scheme of induction for bounded arithmetic formulas. Ann. Pure Appl. Log. 35, 261–302 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zambella D.: Notes on polynomial bounded arithmetic. J. Symbolic Log. 61, 942–966 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost J. Joosten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joosten, J.J. Consistency statements and iterations of computable functions in IΣ1 and PRA. Arch. Math. Logic 49, 773–798 (2010). https://doi.org/10.1007/s00153-010-0199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-010-0199-2

Keywords

Mathematics Subject Classification (2000)

Navigation