Skip to main content
Log in

The de Jongh property for Basic Arithmetic

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We prove that Basic Arithmetic, BA, has the de Jongh property, i.e., for any propositional formula A(p 1,..., p n ) built up of atoms p 1,..., p n , BPC \({\vdash}\) A(p 1,..., p n ) if and only if for all arithmetical sentences B 1,..., B n , BA \({\vdash}\) A(B 1,..., B n ). The technique used in our proof can easily be applied to some known extensions of BA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ardeshir M., Hesaam B.: An introduction to Basic Arithmetic. Logic J. IGPL. 16(1), 1–13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ardeshir M., Ruitenburg W.: Basic propositional calculus I. Math. Logic Q. 44, 317–343 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berarducci A.: The interpretability logic of Peano arithmetic. J. Symb. Logic 55, 1059–1089 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Jongh D.: The maximality of the intuitionistic predicate calculus with respect to Heyting’s Arithmetic. J. Symb. Logic 36, 606 (1970)

    Google Scholar 

  5. de Jongh D., Verbrugge R., Visser A.: Intermediate logics and the de Jongh property. Arch. Math. Logic 50, 197–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feferman S.: Arithmetization of metamathematics in a general setting. Fundam. Math. 49, 33–92 (1960)

    MathSciNet  Google Scholar 

  7. Gaifman, H., Dimitracopoulos, C.: Fragments of Peano Arithmetic and the MRDP-theorem. In: Logic and Algorithmic, Monographie n.30 de l’Einsegnement Mathematique, Geneve 1982, pp. 187–206

  8. Kaye R.: Models of Peano Arithmetic. Clarendon Press, Oxford (1991)

    MATH  Google Scholar 

  9. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)

  10. Ruitenburg W.: Basic predicate calculus. Notre Dame J. Formal Logic 39, 18–46 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Smoryński, C.: Self-reference and Modal Logic, Universitext. Springer, Berlin (1985)

  12. Smoryński, C.: Applications of Kripke models. In: Troelstra, A.S. (ed.) Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, Springer Lecture Notes in Mathematics, vol. 344, pp. 324–391. Springer, Berlin (1973)

  13. Solovay R.M.: Provability interpretations of modal logic. Isr. J. Math. 25, 287–304 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. 1. North-Holland, Amsterdam (1988)

  15. Visser, A.: Interpretability logic. In: Mathematical Logic, Proceedings of the 1988 Heyting Conference, pp. 307–359. Plenum Press, New York (1990)

  16. Visser A.: A propositional logic with explicit fixed points. Stud. Logica 40, 155–175 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ardeshir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardeshir, M., Mojtahedi, S.M. The de Jongh property for Basic Arithmetic. Arch. Math. Logic 53, 881–895 (2014). https://doi.org/10.1007/s00153-014-0394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-014-0394-7

Keywords

Mathematics Subject Classification