Abstract
We prove that Basic Arithmetic, BA, has the de Jongh property, i.e., for any propositional formula A(p 1,..., p n ) built up of atoms p 1,..., p n , BPC \({\vdash}\) A(p 1,..., p n ) if and only if for all arithmetical sentences B 1,..., B n , BA \({\vdash}\) A(B 1,..., B n ). The technique used in our proof can easily be applied to some known extensions of BA.
Similar content being viewed by others
References
Ardeshir M., Hesaam B.: An introduction to Basic Arithmetic. Logic J. IGPL. 16(1), 1–13 (2008)
Ardeshir M., Ruitenburg W.: Basic propositional calculus I. Math. Logic Q. 44, 317–343 (1998)
Berarducci A.: The interpretability logic of Peano arithmetic. J. Symb. Logic 55, 1059–1089 (1990)
de Jongh D.: The maximality of the intuitionistic predicate calculus with respect to Heyting’s Arithmetic. J. Symb. Logic 36, 606 (1970)
de Jongh D., Verbrugge R., Visser A.: Intermediate logics and the de Jongh property. Arch. Math. Logic 50, 197–213 (2011)
Feferman S.: Arithmetization of metamathematics in a general setting. Fundam. Math. 49, 33–92 (1960)
Gaifman, H., Dimitracopoulos, C.: Fragments of Peano Arithmetic and the MRDP-theorem. In: Logic and Algorithmic, Monographie n.30 de l’Einsegnement Mathematique, Geneve 1982, pp. 187–206
Kaye R.: Models of Peano Arithmetic. Clarendon Press, Oxford (1991)
Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
Ruitenburg W.: Basic predicate calculus. Notre Dame J. Formal Logic 39, 18–46 (1998)
Smoryński, C.: Self-reference and Modal Logic, Universitext. Springer, Berlin (1985)
Smoryński, C.: Applications of Kripke models. In: Troelstra, A.S. (ed.) Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, Springer Lecture Notes in Mathematics, vol. 344, pp. 324–391. Springer, Berlin (1973)
Solovay R.M.: Provability interpretations of modal logic. Isr. J. Math. 25, 287–304 (1976)
Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. 1. North-Holland, Amsterdam (1988)
Visser, A.: Interpretability logic. In: Mathematical Logic, Proceedings of the 1988 Heyting Conference, pp. 307–359. Plenum Press, New York (1990)
Visser A.: A propositional logic with explicit fixed points. Stud. Logica 40, 155–175 (1981)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ardeshir, M., Mojtahedi, S.M. The de Jongh property for Basic Arithmetic. Arch. Math. Logic 53, 881–895 (2014). https://doi.org/10.1007/s00153-014-0394-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-014-0394-7