Skip to main content
Log in

On the parameterized complexity of non-monotonic logics

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We investigate the application of Courcelle’s theorem and the logspace version of Elberfeld et al. in the context of non-monotonic reasoning. Here we formalize the implication problem for propositional sets of formulas, the extension existence problem for default logic, the expansion existence problem for autoepistemic logic, the circumscriptive inference problem, as well as the abduction problem in monadic second order logic and thereby obtain fixed-parameter time and space efficient algorithms for these problems. On the other hand, we exhibit, for each of the above problems, families of instances of a very simple structure that, for a wide range of different parameterizations, do not have efficient fixed-parameter algorithms (even in the sense of the large class XPnu, resp., XLnu) under standard complexity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beyersdorff O., Meier A., Thomas M., Vollmer H.: The complexity of propositional implication. Inf. Process. Lett. 109(18), 1071–1077 (2009). doi:10.1016/j.ipl.2009.06.015

    Article  MathSciNet  MATH  Google Scholar 

  2. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of default logic. J. Logic Comput. 22(3), 587–604 (2012). doi:10.1093/logcom/exq061

  3. Bodlaender H.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brewka G., Niemelä I., Truszczynski M.: Nonmonotonic Reasoning. Elsevier, Amsterdam (2008)

    Google Scholar 

  5. Buntrock G., Damm C., Hertrampf U., Meinel C.: Structure and importance of logspace mod-classes. Math. Syst. Theory 25, 223–237 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cadoli, M., Lenzerini, M.: The complexity of closed world reasoning and circumscription. In: Proceedings of 8th National Conference on Artificial Intelligence, pp. 550–555. AAAI Press (1990)

  7. Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in parameterized complexity theory. In: Proceedings of the 18th IEEE Annual Conference on Computational Complexity (CCC 2003), pp. 13–29 (2003). doi:10.1109/CCC.2003.1214407

  8. Courcelle B., Engelfriet J.: Graph Structure and Monadic Second-Order Logic, A Language Theoretic Approach. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  9. Creignou, N., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of autoepistemic logic. ACM Trans. Comput. Logic 13(2) (2010)

  10. Creignou, N., Schmidt, J., Thomas, M.: Complexity of propositional abduction for restricted sets of boolean functions. In: Proceedings of 12th International Conference on the Principles of Knowledge Representation and Reasoning. AAAI Press (2010)

  11. Eiter T., Gottlob G.: Propositional circumscription and extended closed-world reasoning are \({\Pi_{2}^{P}}\)-complete. Theor. Comput. Sci. 114(2), 231–245 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eiter T., Gottlob G.: The complexity of logic-based abduction. JACM 42(1), 3–42 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle. In: Proceedings of 51th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society (2010)

  14. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space complexity of parameterized problems. In: Parameterized and Exact Computation, pp. 206–217. Springer, Berlin (2012)

  15. Fellows, M. R., Pfandler, A., Rosamond, F. A., Rümmele, S.: The parameterized complexity of abduction. In: Proceedings of 26th AAAI Conference on Artificial Intelligence (2012)

  16. Flum J., Grohe M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  17. Gelfond M., Przymusinska H., Przymusinski T.C.: On the relationship between circumscription and negation as failure. Artif. Intell. 38(1), 75–94 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gottlob G.: Complexity results for nonmonotonic logics. J. Logic Comput. 2(3), 397–425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gottlob G., Pichler R., Wei F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gottlob G., Scarcello F., Sideri M.: Fixed-parameter complexity in ai and nonmonotonic reasoning. Artif. Intell. 138(1), 55–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gottlob G., Szeider S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction and database problems. Comput. J. 51(3), 303–325 (2008)

    Article  Google Scholar 

  22. Jakl, M., Pichler, R., Woltran, S.: Answer-Set Programming with Bounded Treewidth. In: Proceedings of 21st IJCAI, pp. 816–822 (2009)

  23. Kirousis L.M., Kolaitis P.G.: The complexity of minimal satisfiability problems. Inf. Comput. 187(1), 20–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lifschitz, V.: Computing circumscription. In: Proceedings of 9th International Joint Conference on Artificial Intelligence, pp. 121–127. Morgan Kaufman (1985)

  25. Marek V., Truszczynski M.: Nonmonotonic Logic: Context-Dependent Reasoning. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  26. Marek, V., Truszczynski, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm—A 25-Year Perspective, pp. 375–398 (1999)

  27. McCarthy J.: Circumscription—a form of non-monotonic reasoning. Artif. Intell. 13(1–2), 27–39 (1980)

    Article  MATH  Google Scholar 

  28. Moore R.C.: Semantical considerations on modal logic. Artif. Intell. 25, 75–94 (1985)

    Article  MATH  Google Scholar 

  29. Niemelä, I.: Towards automatic autoepistemic reasoning. In: Proceedings of 2nd European Workshop on Logics in Artificial Intelligence, LNCS, vol. 478, pp. 428–443. Springer, Berlin (1990)

  30. Niemelä I.: Logic programming with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MATH  Google Scholar 

  31. Nordh, G.: A trichotomy in the complexity of propositional circumscription. In: Proceedings of 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, pp. 257–269. Springer, Berlin (2004)

  32. Peirce C.S.: Philosophical Writings of Peirce. Courier Dover Publications, New York (1955)

    Google Scholar 

  33. Peirce C.S., Hartshorne C., Weiss P.: The Collected Papers of Charles Sanders Peirce. Cambridge Press, Cambridge (1932)

    Google Scholar 

  34. Post E.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  35. Reiter R.: A logic for default reasoning. Artif. Intell. 13, 81–132 (1980)

    Article  MathSciNet  Google Scholar 

  36. Thomas, M.: On the complexity of fragments of nonmonotonic logics. Ph.D. thesis, Leibniz Universität Hannover (2010)

  37. Thomas M., Vollmer H.: Complexity of non-monotonic logic. Bull. EATCS 102, 53–82 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Zaho X., Ding D.: Fixed-parameter tractability of disjunction-free default reasoning. JCST 18(1), 118–124 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Meier.

Additional information

This work is supported in part by DFG Grant VO 630/6-2 and ME 4279/1-1. Part of this work has been published in a preliminary form in: A. Meier and J. Schmidt and M. Thomas and H. Vollmer, On the Parameterized Complexity of Default Logic and Autoepistemic Logic, Proc. LATA 2012, pp. 389–400, vol. 7183 LNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, A., Schindler, I., Schmidt, J. et al. On the parameterized complexity of non-monotonic logics. Arch. Math. Logic 54, 685–710 (2015). https://doi.org/10.1007/s00153-015-0435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-015-0435-x

Keywords

Navigation