Skip to main content
Log in

Splitting idempotents in a fibered setting

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

By splitting idempotent morphisms in the total and base categories of fibrations we provide an explicit elementary description of the Cauchy completion of objects in the categories Fib(\(\mathbb {B}\)) of fibrations with a fixed base category \(\mathbb {B}\) and Fib of fibrations with any base category. Two universal constructions are at issue, corresponding to two fibered reflections involving the fibration of fibrations \(\mathbf{Fib}\rightarrow \mathbf{Cat}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

References

  1. Bénabou, J.: Fibered categories and the foundations of naive category theory. J. Symb. Log. 50(1), 10–37 (1985). https://doi.org/10.2307/2273784

    Article  MathSciNet  MATH  Google Scholar 

  2. Borceux, F., Dejean, D.: Cauchy completion in category theory. Cahiers Topologie Géom. Différentielle Catég. 27(2), 133–146 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Carboni, A.: Some free constructions in realizability and proof theory. J. Pure Appl. Algebra 103(2), 117–148 (1995). https://doi.org/10.1016/0022-4049(94)00103-P

    Article  MathSciNet  MATH  Google Scholar 

  4. Carboni, A., Magno, R.C.: The free exact category on a left exact one. J. Aust. Math. Soc. Ser. A 33(3), 295–301 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carboni, A., Vitale, E.M.: Regular and exact completions. J. Pure Appl. Algebra 125(1–3), 79–116 (1998). https://doi.org/10.1016/S0022-4049(96)00115-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Freyd, P.J.: Abelian categories [mr0166240]. Repr. Theory Appl. Categ. 3, 1–190 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Freyd, P.J., Scedrov, A.: Categories, Allegories, North-Holland Mathematical Library, vol. 39. North-Holland Publishing Co., Amsterdam (1990)

    MATH  Google Scholar 

  8. Hermida, C.: Some properties of Fib as a fibred \(2\)-category. J. Pure Appl. Algebra 134(1), 83–109 (1999). https://doi.org/10.1016/S0022-4049(97)00129-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoofman, R., Moerdijk, I.: A remark on the theory of semi-functors. Math. Struct. Comput. Sci. 5(1), 1–8 (1995). https://doi.org/10.1017/S096012950000061X

    Article  MathSciNet  MATH  Google Scholar 

  10. Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics, vol. 141. North-Holland Publishing Co., Amsterdam (1999)

    Google Scholar 

  11. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, Vol. 1, Oxford Logic Guides, vol. 43. The Clarendon Press, New York (2002)

    MATH  Google Scholar 

  12. Kelly, G.M.: A note on relations relative to a factorization system. In: Category Theory (Como, 1990), Lecture Notes in Math., vol. 1488, pp. 249–261. Springer, Berlin (1991). https://doi.org/10.1007/BFb0084224

  13. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  14. McLarty, C.: Elementary Categories, Elementary Toposes, Oxford Logic Guides, vol. 21. The Clarendon Press, Oxford University Press, New York (1992). Oxford Science Publications

  15. Streicher, T.: Fibred categories à la Jean Bénabou. http://www.mathematik.tu-darmstadt.de/streicher/ (2012)

  16. van Oosten, J.: Fibrations and calculi of fractions. J. Pure Appl. Algebra 146(1), 77–102 (2000). https://doi.org/10.1016/S0022-4049(99)00058-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruggero Pagnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagnan, R. Splitting idempotents in a fibered setting. Arch. Math. Logic 57, 917–938 (2018). https://doi.org/10.1007/s00153-018-0616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-018-0616-5

Keywords

Mathematics Subject Classification

Navigation