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Abstract. We study the modal logicMLr of the countable random frame, which is contained
in and ‘approximates’ the modal logic of almost sure frame validity, i.e. the logic of those
modal principles which are valid with asymptotic probability 1 in a randomly chosen finite
frame. We give a sound and complete axiomatization ofMLr and show that it is not finitely
axiomatizable. Then we describe the finite frames of that logic and show that it has the finite
frame property and its satisfiability problem is in EXPTIME. All these results easily extend
to temporal and other multi-modal logics. Finally, we show that there are modal formulas
which are almost surely valid in the finite, yet fail in the countable random frame, and hence
do not follow from the extension axioms. Therefore the analog of Fagin’s transfer theorem
for almost sure validity in first-order logic fails for modal logic.

1. Introduction

This paper is intended for readers mainly familiar with the modal logic side of the
story, and not expected to have background on random structures and asymptotic
probabilities, so we offer a brief introduction to the subject, emphasizing on 0-1
laws and almost sure validity in finite structures.

The studies of random structures apparently began from the work of Erdös
and Renyi on random graphs and applications of probabilistic methods in com-
binatorics. The logical trend in these studies goes back (at least) to Carnap who
proposed in [Carnap 50] the idea of considering asymptotic probabilities of prop-
erties expressible by logical formulas. Furthermore, Carnap proved the following
remarkable result for the first-order language L1 containing only unary predicate
symbols: the proportion ofL1-structures (taken up to isomorphism) with n elements
in which a given L1-sentence is true tends either to 0 or to 1 as n tends to infinity.
In probabilistic terms, this is the so called (unlabelled) zero-one law for L1: every
first-order definable property of unary relational structures holds in a randomly
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chosen finite structure with probability either 0 or 1, i.e. it is either almost surely
valid or almost surely invalid in the finite.

Later, Gaifman studied in [Gaifman 64] infinite random structures as probabilis-
tic models for arbitrary relational first-order languages and proved that the first-or-
der theory of such structures satisfies an infinite set of extension axioms: sentences
claiming that every n-tuple in the structure can be extended to an (n + 1)-tuple
in all possible (i.e. consistent) ways. Furthermore, he showed that the first-order
theory EXT axiomatized with all extension axioms is ω-categorical and complete.
The probabilistic aspect of this result is rather surprising: it means that, assuming
uniform distribution, any randomly constructed countable relational structure is
isomorphic with probability 1 to a certain structure, the countable random struc-
ture! For graphs this fact seemingly had already been noted by Radó and Erdös, but
Gaifman’s result showed that for any relational language this ubiquitous structure
is precisely the unique, up to isomorphism, countable model of EXT.

The 0-1 law for arbitrary relational first-order languages was first proved in
[Glebskii et al 69]. It was established by an “almost sure" quantifier elimination
proved by an involved induction on the complexity of the formula but was pub-
lished in a not widely available journal. The result, and the paper itself, remained
largely unnoticed until a few years later Fagin, unaware of that work, but led by
attempts to solve the spectrum problem, noticed the intimate connection between
Carnap’s and Gaifman’s results and rediscovered the 0-1 law for first-order logic,
to which he gave an elegant and insightful proof in [Fagin 76]. He noticed that
every finite set of extension axioms not only has a finite model, but is satisfied by
almost every finite structure! Thus, Fagin provided two purely logical descriptions
of the almost surely valid first-order properties, viz. he showed that the following
are equivalent:

i) φ is almost surely true in finite L-structures.
ii) φ follows from (finitely many) extension axioms.

iii) φ is true in the countable random structure.

These results sparked extensive and fruitful research on asymptotic probabili-
ties of properties formalizable in logical languages. The 0-1 law was proved: for
the extension of first-order logic with a transitive closure operator in [Talanov 81];
for the more expressive extension of first-order logic with a fixed point operator in
[Blass, Gurevich and Kozen 85]; later subsumed by the 0-1 law for the infinitary
logic over bounded number of variables Lω∞,ω proved in [Kolaitis and Vardi 92];
for some prefix-defined fragments of monadic second-order logic in
[Kolaitis and Vardi 90] who also established strong relations between decidabil-
ity and 0-1 laws of such fragments; for modal logic in [Halpern and Kapron 94].

In general, however, the 0-1 law turns out to be rather a rare phenomenon than
a rule. It can be easily seen that the presence of a single constant in the language
is fatal for it; still, it was proved in [Lynch 85] that every sentence in a first-order
language with only unary functions does have an asymptotic probability (though
in general not 0 or 1). For second-order logic the 0-1 law fails badly, as even its
monadic existential fragment contains sentences with no asymptotic probability, as
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first proved by Kaufmann (see [le Bars 99a] for a very accessible account of Kauf-
mann’s counterexample, and [le Bars 99b], and [Kolaitis and Vardi 89] for more).
While for prefix-defined fragments of monadic�1

1 the boundary of 0- 1 laws seems
to be already essentially delineated (see [Kolaitis and Vardi 89] for a survey, and
[le Bars 99b] for recent additions), in general it seems rather less known, especially
for the full (monadic) second-order logic.

For more on 0-1 laws and asymptotic probabilities, besides the references above,
see the classical survey [Compton 88], and the very readable [Gurevich 92].

An important problem in the area, relatively independent from the truth or oth-
erwise of 0-1 laws, is to give a logical characterization of the almost sure truth/va-
lidity in the finite for the various logical languages. The result of Fagin, mentioned
above, is the definitive solution to that problem for first-order logic. Interestingly,
the 0-1 law-via-transfer phenomenon, viz. the property of the countable random
structure to satisfy precisely those sentences which are almost surely valid in the
finite, persists in the infinitary logic, as well as in all so far known prefix-defined
fragments of second-order logic for which the 0-1 law holds. Therefore, in all these
cases, the almost surely valid properties are those which follow from the extension
axioms. This, however, is not always the case, even for �1

1 : for instance it was
shown in [Blass, Harary 79] that the property of a graph to be Hamiltonian (which
is NP-complete, hence �1

1-definable) is almost surely valid but does not follow
from any extension axiom. Furthermore, as results in [Dawar and Grädel 95] indi-
cate, there is no natural, in sense of abstract model theory, logic which can express
Hamiltonicity and has the 0-1 law.

However, even in cases when there is no transfer theorem, or the 0-1 law fails
hopelessly, the class of sentences almost surely true in the finite is coherently deter-
mined and it is natural to pursue its logical characterization, be it model-theoretic
or axiomatic. Besides the obvious practical importance of this problem (especially
for logics with high complexity, or undecidable), it turns out that the transition from
‘absolute truth’ to ‘truth with probability 1’ can reduce the complexity qualitative-
ly, witness first-order logic where almost sure validity in the finite, as proved in
[Grandjean 83], is PSPACE-complete, vs. the undecidable validity in the finite, by
Trachtenbrot’s theorem.

Apart from the cases of 0-1 law via transfer, there seem to be very few results
describing logically almost sure validity in the finite. An obvious reason is that
this is not an a priori logically tractable concept. It lacks explicit logical seman-
tics in terms of single models, but rather involves the class of all finite models as
a whole, so it is essentially global unlike absolute validity. It is conceivable, for
instance, that almost sure validity can be of such a high complexity that a recursive
axiomatization is impossible, while there are no finite models of all almost sure
validities. On the other hand, it is semantically well-behaved as it contains all valid
formulas and is closed under finitary logical consequence, and it is deductively well
behaved, being closed under finitary rules of inference, such as modus ponens: if
A and A → B are true in almost every finite model, then so is B.

In modal logic there are two basic notions of validity: in models and in frames.
Respectively, there are two concepts of almost sure validity. [Halpern and Kapron
94] prove the 0-1 law for both of them. The result for almost sure model validity
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(called in [Halpern and Kapron 94] “structure validity") follows easily from Fagin’s
theorem, as model validity can be expressed in first-order logic by means of van Ben-
them’s standard translation (see [van Benthem 85]), but [Halpern and Kapron 94]
does more: it provides an easy algorithm for checking if a modal formula is al-
most surely structure valid, and gives an explicit complete axiomatization of that
concept, which turns out to be captured precisely by Carnap’s logic, the axioms of
which are all ♦φ where φ is a consistent propositional formula. Note that this is
not a normal modal logic, as it is not closed under substitutions. Regarding almost
sure frame validity, however, the result is essentially new and the proof is a rather
complicated combinatorial estimation of probabilities, which unfortunately offers
little logical insight.1 Furthermore, the proof implies a kind of a transfer theorem
which associates almost sure frame validity with validity in a certain infinite frame
which is a disjoint union of special finite frames of rather inexplicit nature, so this
transfer result does not provide much insight into the nature of the modal logic of
almost sure frame validity either. On the other hand, results in the present paper
show that there is no transfer theorem with respect to the countable random frame
F r , and strongly indicate that probably there is no “natural" transfer theorem at all.

On the other hand, an easy compactness argument due to Kolaitis and Vardi
shows that every �1

1 sentence which is valid in F r follows from an extension axi-
om and hence is almost surely valid in finite frames. Therefore, the normal modal
logic MLr of F r is contained in the normal modal logic MLas of almost surely
frame-valid formulas. As we show here, the inclusion is proper.

In this paper we study the logic MLr . Unlike the intractable logic of almost
sure frame-validity, MLr being determined by a single, though infinite, frame has a
perspicuous semantics and turns out to be a reasonably well-behaved, though non-
finitely axiomatizable, canonical modal logic with the finite frame property. The
major difficulty in the completeness proof is to show that the canonical model sat-
isfies the same formulas as the infinite random frame. The proof, however, is quite
portable and easily extends to temporal and various other extended multi-modal
logics.

Thus, the paper can be regarded as a study of the well-behaved fragment of
almost sure frame validity in modal logic, if not the whole of it.

The paper is organized as follows: The preliminary section 1 introduces formal-
ly the basic concepts and facts related to random frames and almost sure validity
and proves some results in modal logic needed later. Section 2 gives a more detailed
background on the logic MLr and contains some results on almost sure validity.
In section 3 we give a canonical axiomatization of MLr and prove its complete-
ness with respect to F r . We also prove that MLr is not finitely axiomatizable, but
has the finite frame property via filtration, and the finite models are easily rec-
ognizable, which establishes an EXPSPACE upper bound for the complexity of
its satisfiability. Finally, we discuss special modally definable properties express-
ing non-existence of certain partitions, called kernel partitions in random frames,

1 In a recent paper [le Bars 02] Le Bars claims that this result is wrong, by providing a
counter-example. Anyway, none of the results in our paper depends on the truth or otherwise
of the 0-1 law for frame validity of modal formulae.
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and show that there are modal formulas corresponding to simple such partitions,
which are almost surely valid in the finite, yet fail in the countable random frame,
and hence do not follow from the extension axioms. The paper ends with some
concluding remarks.

2. Preliminaries

2.1. Modal logic

We assume basic familiarity with the syntax and Kripke semantics of standard
normal modal logics, including the notions of canonical model, p-morphism,
bisimulation. For information on these, see e.g. [van Benthem 85] or
[Blackburn, de Rijke, and Venema 2001].

We will need the following notion of bounded bisimulation, introduced first
by Hennessy and Milner.

Definition 1. Let M1 = 〈W1, R1, V1〉 and M2 = 〈W2, R2, V2〉 be models, and
x1 ∈ W1, x2 ∈ W2. We define the property of (M1, x1) and (M2, x2) to be k-bisim-
ilar, denoted (M1, x1) ∼k (M2, x2) inductively on k ∈ N as follows:

– (M1, x1) ∼0 (M2, x2) iff x1 and x2 satisfy the same propositional variables.
– (M1, x1) ∼k+1 (M2, x2) if (M1, x1) ∼k (M2, x2) and:

(forth): For every y1 ∈ M1 such that R1x1y1 there exists a y2 ∈ M2 such that
R2x2y2 and (M1, y1) ∼k (M2, y2);
(back): Similarly for M1 and M2 exchanged.

In terms of games, k-bisimulation corresponds to existence of a winning strat-
egy for the duplicator in a k-round 2-pebble game.

k-bisimulation between rooted models can be described logically by the
following modal analogs of Fraı̈ssé formulas in first-order logic.

Definition 2. LetL be a modal language with a finite set of propositional variables
P = {p1, ..., pn}, M = 〈W,R, V 〉 be an L-model, and x ∈ W . For every k ∈ N
we define inductively on k the modal k-type of x in M , Tk(x,M) as follows.

– T0(x,M) = ∧{p|x ∈ V (p)} ∧ ∧{¬p|x 	∈ V (p)}.
Note that there are finitely many 0-types in L.

– Tk+1(x,M) = Tk(x,M) ∧ ∧{♦Tk(y,M)|Rxy} ∧ �
∨{Tk(y,M)|Rxy}.

Assuming there are only finitely many k-types in L it follows that the conjunc-
tions and disjunctions in this definition are finite, and hence there are only finitely
many (k + 1)-types, too.

Proposition 1. Let L be a modal language with a finite set of variables, M1 =
〈F1, R1, V1〉 andM2 = 〈F2, R2, V2〉 be L-models, and x1 ∈ F1, x2 ∈ F2. Then for
any k ∈ N the following are equivalent:

1. (M1, x1) ∼k (M2, x2).

2. Tk(x1,M1) ≡ Tk(x2,M2).

3. (M1, x1) and (M2, x2) satisfy the same formulas of modal depth at most k.
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Proof.
(1) ⇔ (2): Straightforward induction on k.
(2) ⇔ (3): Again, induction on k. Note that Tk(x,M) has modal depth k and

that every modal formula of depth k + 1 is equivalent to a disjunction of formu-
lae ψ ∧ �φ0 ∧ ∧m

i=1 ♦φi where the modal depth of ψ is 0 and that of each of
φ0, φ1, ..., φm is at most k. �


2.2. Random Kripke frames

Given n ∈ N , a random (labelled) frame of size n is a frame obtained by random
and independent assignments of truth/falsity of the binary relation on every pair
(x, y) from the set {1, . . . , n}, with probability for truth p(n). In this paper we con-
sider p(n) to be a constant. In the particular case when p = 0.5, the random frame
can be obtained by a random assignment of a binary relation on the domain, us-
ing uniform distribution, i.e. considering all possible binary relations equiprobable.
However, the results used and those obtained here hold for any constant probability
p ∈ (0, 1).

The probability space on all n-element frames constructed as above will be
denoted by S(n, p).

In this sub-section we consider frames as first-order structures for a language
with = and one binary relational symbol.

For any property of frames P we denote by µn,p(P ) the probability of P in
S(n, p), i.e. the probability that P holds for a randomly constructed n-element
frame. In particular, if φ is a first-order sentence,µn,p(φ)will denote the probabili-
ty for φ to be true in a frame from S(n, p). Note that these are discrete probabilities
since S(n, p) is finite.

Now, we consider µp(φ) = limn→∞ µn,p(φ) and if it exists we call it
the asymptotic probability of φ. Once the probability p is fixed, we omit the
subscript.

A sentence φ is said to be almost surely valid in the finite if µ(φ) = 1, and
respectively, almost surely invalid if µ(φ) = 0.

Remark 1.
1) Note that the probability measure µ defined as above is not countably addi-

tive. E.g, µ(|F | = n) = 0 for every fixed n, while µ(∃n(|F | = n)) = 1.
2) These are labelled probabilities, as the probability space consists of labelled

frames, i.e. two isomorphic frames with different labelling of the domains are re-
garded different. Alternatively, one can consider probability spaces consisting of
unlabelled frames, i.e. isomorphism types of frames. Though more natural from
mathematical viewpoint, this choice makes the computation ofµn much more diffi-
cult. It turns out, however, that the labelled and unlabelled asymptotic probabilities
coincide. The reason for this is that the property of a frame to be rigid, i.e. not to
have non-trivial automorphisms, is almost surely valid (see [Gurevich 92]). Note
that every rigid n-element frame has the same number, viz. n!, of non-isomorphic
labellings, whence the equality of the asymptotic probabilities.



The modal logic of the countable random frame 227

The construction of random frames by means of a random pairwise assignment
of a binary relation with a given probability for truth of the relation p can be per-
formed on infinite sets, too. The outcome of such a random construction on the set
N of natural numbers will be called a countable random frame. An alternative,
and more precise definition will be given below, from which it will also become
clear that such a countable random frame is unique up to isomorphism.

Using combinatorial-probabilistic argument, it can be proved (see [Fagin 76]
or [Gurevich 92]) that every countable random frame with probability 1 satisfies
an infinite set of extension axioms. These are all instances of the scheme (EXT):

∀x∃y



∧

i 	=j
xi 	= xj →




∧

i∈[n]

xi 	= y ∧ T (y, y) ∧
∧

i∈I
Rxiy ∧

∧

i∈[n]−I
¬Rxiy ∧

∧

i∈J
Ryxj ∧

∧

j∈[n]−J
¬Ryxj







 ,

where x = x1 . . . xn, T (y, y) is either Ryy or ¬Ryy, [n] = {1, 2, . . . , n} and
I, J ⊆ [n].

By θk we denote the conjunction of all (finitely many) extension axioms using
at most k variables.

As a particular case of Gaifman’s results (see [Gaifman 64]) the following holds.

Theorem 1. The theory EXT is consistent and ω- categorical, hence complete.

The unique countable model F r of EXT will be called the countable random
frame.

Theorem 2. ([Fagin 76]) For any first-order sentenceψ of the first-order language
for frames:

1. If F r |= ψ then µ(ψ) = 1.
2. If F r 	|= ψ then µ(ψ) = 0.

This theorem immediately implies the 0-1 law for first-order logic: every first-
order sentence for frames is either almost surely valid or almost surely invalid
in the finite. Moreover, it implies, by compactness, that every almost surely valid
first-order sentence follows from finitely many extension axioms, hence from some
θk .

The extension axioms can be similarly defined in any relational language and
Gaifman’s result applies and determines the countable random structure of that lan-
guage. Furthermore, Fagin’s theorem holds for the first-order logic of any relational
language.
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2.3. On the almost sure model validity of modal formulas

One can consider probability spaces of random Kripke models, i.e. models based
on random frames and with random valuation of the propositional variables.

Following [Halpern and Kapron 94] we denote the corresponding probabilities
by νn,p(φ) and νp(φ) and will call validity in models structure validity.

Since the evaluated propositional variables can be regarded as unary predicates,
Kripke models are first-order relational structures and the 0-1 law holds for the al-
most sure structure validity. The remarks on probabilities on frames as first-order
structures apply here, too, but there is an added subtlety: the probability space of
random models depends on the set P of propositional variables, too, and therefore
one can expect that the probability of a formula can depend on the cardinality of
P . As shown in [Halpern and Kapron 94], however, this is not the case, so without
loss of generality, when computing asymptotic probabilities one needs to consider
only languages with finite sets P .

The following results about almost sure structure validity were obtained in
[Halpern and Kapron 94].

Proposition 2. φ is a consistent propositional formula iff ♦φ is valid in almost all
models.

It turns out that all formulas of the type ♦φ where φ is a consistent propositional
formula axiomatize the modal logic of almost sure model validity. It turns out to
be the so called Carnap’s logic. Note that it is not a normal modal logic, since it is
not closed under uniform substitutions.

Furthermore, [Halpern and Kapron 94] provides a translation from an arbitrary
modal formula φ to a propositional formula φr , with the property that φ ⇔ φr

is almost-surely valid. That translation is defined by structural induction on the
formulas:

– pr = p for a primitive proposition p
– (φ ∧ ψ)r = φr ∧ ψr
– (¬φ)r = ¬φr
– (�φ)r =

{� if φr is valid
⊥ otherwise.

Proposition 3. The formula φ ⇔ φr is valid in almost all structures.

Theorem 3. For every modal formula φ, ν(φ) = 1 iff the propositional formula
φr is valid; otherwise ν(φ) = 0.

2.4. Almost sure frame validity

In this paper we study almost sure validity of modal formulas in Kripke frames.
Recall that a modal formula φ is valid in a Kripke frame F if it is valid in every
model over F , i.e. for every valuation in F of the propositional variables occur-
ring in φ. Thus, frame validity is a second-order property. More specifically, it



The modal logic of the countable random frame 229

is a monadic �1
1-property, via the standard translation of modal formulas (see

[van Benthem 85]).
Again following [Halpern and Kapron 94] we denote the respective probabili-

ties byµn,p(φ) andµp(φ). (This should not cause confusion with first-order validity
in frames, as it will be clear from the context whether the formula in question in
modal or first-order.)

Hereafter we will refer to (almost sure) frame validity as just (almost sure)
validity. Formally:

Definition 3. A modal formula φ is said to be almost surely valid (in the finite) if
µ(φ) = 1, and respectively, almost surely invalid if µ(φ) = 0.

The 0-1 law for first-order logic does not apply to almost sure frame validity.
Yet:

Theorem 4. ([Halpern and Kapron 94]) Zero-one law for frame validity in modal
logic) For every modal formula φ, µ(φ) = 1 or µ(φ) = 0.2

3. The modal logic MLr of the countable random frame and the modal logic
MLas of the almost sure frame validity in the finite

3.1. Some properties of the countable random frame and of the almost sure frame
validity in the finite

We begin with some basic facts about F r , which easily follow from the extension
axioms:

– It has a diameter 2, i.e. every point can be reached from any point (including
itself) in 2 R-steps. Indeed, by θ3: F r |= ∀x∀y∃z(Rxz ∧ Rzy).

– Every point has infinitely many predecessors and infinitely many successors.
– Every finite frame is embeddable as a subframe in F r .

We denote the universal modality, interpreted by the Cartesian square of the
domain, by A and its dual, the existential modality, by E. (For reference on modal
logic with universal modality see [Goranko and Passy 92].) These modalities turn
out to be definable almost everywhere:

Proposition 4. In every frame with diameter 2:

Ep ≡ ♦♦p, respectively Ap ≡ ��p,

Therefore this equivalence holds in almost every finite frame and in F r .

Proposition 5. ([Kolaitis and Vardi 90]) A�1
1-sentence φ is true in F r iff it follows

from some extension axiom, and hence every such sentence is almost surely valid
(in the finite). Respectively, every not almost surely false�1

1 -sentence is true in F r .

2 See the footnote in the introduction.
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Proof. One direction is trivial, since every extension axiom is true in F r . For the
other, let φ = ∀Rψ , where ψ is a first-order sentence. Suppose φ does not follow
from any extension axiom. Then every finite set of extension axioms is satisfiable
together with ¬ψ , hence by compactness, (EXT) is satisfiable together with ¬ψ ,
hence ¬ψ is true in some R-expansion of F r – a contradiction. �

Proposition 6. Every almost surely valid modal formulaA that defines a universal
frame-condition is valid.

Proof. Suppose ¬A is satisfiable. Then it is satisfiable in a model on a finite frame
F . The satisfiability of ¬A is an existential condition, hence preserved in exten-
sions. By the extension axioms, almost every finite frame contains a copy of F , and
hence satisfies ¬A. Thus, A is almost surely non-valid. �


Thus, reflexivity, symmetry, transitivity etc. are not almost surely valid, hence
they are almost surely invalid.

3.2. The modal logics MLr and MLas

Definition 4.
MLr is the modal logic of the formulas valid in F r .
MLas is the modal logic of the formulas which are almost surely valid in the

finite.

Proposition 7.

1. MLr and MLas are normal modal logics.
2. MLr ⊆ MLas .
3. A formula is in MLr iff it follows logically from an extension axiom (meaning

that it is valid in every frame which, as a first-order structure, is a model of that
extension axiom).

Proof. (1) A routine verification shows that both logics contain all tautologies,
the axiom K , and are closed under substitution, MP and necessitation. (2) and (3)
follow from proposition 5. �


3.3. Some almost surely valid modal principles

Here are some validities in MLr that follow from the extension axioms.

Proposition 8. The following modal formulas follow from (EXT) and hence are
valid in F r .

• �p → ♦p, and hence ♦� (seriality);
• ♦�p → ♦p, �p → �♦p;
• p → ♦♦p, ��p → p (diameter 2);
• ♦p → ♦♦p, ��p → �p (density);
• ♦�p → ��♦p, ♦♦�p → �♦p.

Note that these imply Church-Rosser property: ♦�p → �♦p.
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• M♦♦p ≡ ♦♦p, M��p ≡ ��p for any string M of modalities.

Two useful derivable rules of inference in MLr :

• If � �φ then � φ.
• If � φ then � ♦φ.

Proposition 9. For any strings of modalities M1 and M2, the modal reduction
principle

M1♦p → M2�p is almost surely structure-invalid and hence almost surely
frame-invalid.

Proof. (M1♦p → M2�p)r = ⊥. �


For instance, McKinsey’s axiom �♦p → ♦�p is almost surely frame-invalid.

3.4. Depth 3 equivalence and almost sure isomorphism

Lemma 1. Let F = 〈W,R〉 be a finite frame, W = {w1, . . . , wn} and let χF be
the formula

¬A(
n∨

i=1

Epi ∧
∧

1≤i 	=j≤n
(pi → ¬pj ) ∧

∧

1≤i,j≤n
{pi → ♦pj |wiRwj }∧

∧

1≤i,j≤n
{pi → ¬♦pj |¬wiRwj }),

for different propositional variables {p1, . . . , pn}.
Then for every frame G with diameter 2, F is a p-morphic image of G iff

G 	|= χF .

Proof. Suppose G,V 	|= χF for some valuation V . Then every point y ∈ G

satisfies exactly one variable pi(y) from {p1, . . . , pn}. Furthermore, the mapping
f : G −→ F defined by f (y) = wi(y) is a surjective p- morphism.

Vice versa, if f : G −→ F is a surjective p-morphism, then the valuation V
on G defined by V (pi) = f−1(wi) satisfies ¬χF . �


Proposition 10. Let for n ∈ N , Pn = Pr(F ∼= G|F ≡3,n G) be the probability
that two randomly chosen frames F,G of size at most n are isomorphic given that
they validate the same modal formulas of at most n propositional variables and
modal depth 3.

Then limn→∞ Pn = 1.

Proof. Suppose that F = 〈W,R〉 andG = 〈U, S〉 validate exactly the same depth
3 formulas. Then, in particularG 	|= χF and F 	|= χG. With asymptotic probability
1 both frames have diameter 2. Then, by lemma 1 each of them is a p-morphic
image of the other, so they are isomorphic. �
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4. Complete axiomatization of MLr

4.1. Axioms for MLr

What properties of F r can be defined modally? Certainly those must be preserved
by the basic constructions preserving modal validity. Since generated subframes
and disjoint unions are trivialized in a language with universal modality, only
p-morphisms can be meaningfully used, and the following lemma gives a clue.

Lemma 2. (See [van Benthem 85], Th 15.11) A first-order sentence in the language
with = and a binary relation R is preserved by p-morphisms iff it is equivalent to
one constructed from atomic formulas, �, and ⊥ using ∧,∨, ∃,∀, and restricted
universal quantification ∀z(Ryz → . . .) for z 	= y.

Therefore, the instances of the following schema are preserved by p-morphisms:

∀x1 . . .∀xn∃y(
∧

i∈I
Rxiy ∧

∧

j∈J
Ryxj ),

where I, J ⊆ [n] = {1, . . . , n}.
This is an approximation of the schema EXT. Its strongest form is EXTp:

∀x1 . . .∀xn∃y
∧

i∈[n]

(Rxiy ∧ Ryxj ).

As we will see, this is all that modal logic can express from the extension
axioms.

We now introduce the following system of axioms for MLr (recall that A is
defined as ��).

(MLr1) K: �(p → q) → (�p → �q).
(MLr2) Ap → p.
(MLr3) Ap → A�p.
(MLr4) p → AEp.
(MLr5) The scheme MODEXT consisting of the sequence of axioms MODEXTn

for n ∈ N :

n∧

k=1

E(pk ∧ �qk) → E
n∧

k=1

(♦pk ∧ qk).

Theorem 5. The axiomatization of MLr is sound.

Proof. Straightforward. Note that MODEXT is a modal translation of the scheme
EXTp. �


Let us denote the canonical model for MLr byMc and its underlying frame by
Fc = 〈Wc,Rc〉.

For the completeness proof we will need the following technical result.
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Lemma 3. Let A,B be finite subsets of Fc. Then there is a reflexive point y ∈ Fc
such that y 	∈ A and for every x ∈ B, both Rcxy and Rcyx hold.

Proof. First, we show that the rôle of A is inessential. Indeed, for every a ∈ A

there is ya ∈ Mc such that ¬Ryaa: for any propositional variable p, either p 	∈ a
or ¬p 	∈ a, while both �¬p and �p are consistent. If, for instance p 	∈ a then we
choose ya to contain �¬p, otherwise we choose it to contain �p. So, we can add
to B such ya for every a ∈ A. Then any y satisfying the requirement of the lemma
will be different from any a ∈ A. Hence, it suffices to prove the claim for A = ∅.

Let B = {b1, . . . bn}. Some notation: for any x ∈ Mc, �x = {α|�α ∈ x}, and
♦(x) = {♦α|α ∈ x}.

The key fact to prove is that the set

Y = �b1 ∪ . . . ∪ �bn ∪ ♦(b1) ∪ . . . ∪ ♦(bn) ∪ {�γ → γ | for all formulas γ }
is MLr -consistent.
Suppose otherwise. Then some finite subset Y0 of Y is inconsistent. Since all

sets �x are closed under conjunctions, we can assume that Y0 consists of:
α1 ∈ �b1, . . . , αn ∈ �bn,♦β11, . . . ,♦β1k1 ∈ ♦(b1), . . . ,♦βn1, . . . ,♦βnkn ∈

♦(bn),
and �γ1 → γ1, . . . ,�γm → γm.
Let βi = βi1 ∧ . . . ∧ βiki . Then βi ∈ bi , for i = 1, ..., n. Let us denote

derivability in MLr by �.
Since Y0 is inconsistent,

�
∧

i∈[n]

αi ∧
∧

i∈[n],j∈[ki ]

♦βij → ¬((�γ1 → γ1) ∧ . . . ∧ (�γm → γm)),

i.e.
∧

i∈[n]

(αi ∧
∧

j∈[ki ]

♦βij ) � (�γ1 ∧ ¬γ1) ∨ . . . ∨ (�γm ∧ ¬γm),

hence
∧

i∈[n]

(αi ∧ ♦βi) � (�γ1 ∧ ¬γ1) ∨ . . . ∨ (�γm ∧ ¬γm).

Therefore

E(
∧

i∈[n]

(αi ∧ ♦βi)) � E((�γ1 ∧ ¬γ1) ∨ . . . ∨ (�γm ∧ ¬γm)),

hence by MODEXT:
∧

i∈[n]

E(�αi ∧ βi) � E((�γ1 ∧ ¬γ1) ∨ . . . ∨ (�γm ∧ ¬γm)).

But, for every i, (�αi ∧ βi) ∈ bi , hence E(�αi ∧ βi) is valid inMc, and there-
fore derivable in MLr . Then E((�γ1 ∧ ¬γ1) ∨ . . . ∨ (�γm ∧ ¬γm)) is derivable
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in MLr which contradicts the soundness of MLr for F r because this formula is
almost surely structure-invalid, hence almost surely frame-invalid, so not valid in
F r .

Thus, Y must be consistent. Let y be any maximal theory in MLr which ex-
tends Y . Then �bi ⊆ y, so Rcbiy, and ♦(bi) ⊆ y, so Rcybi , for each i = 1, ..., n.
Finally, �y ⊆ y, i.e. Rcyy. �

Theorem 6. The axiomatization of MLr is complete.

Proof. First, note that the axioms derive Ap → �p and Ap → AAp, so they en-
sure that A is an S5-modality implying �. In fact, this renders a complete axiomati-
zation of the universal modality added to �, as proved in [Goranko and Passy 92].

To be precise, the relation Ru corresponding to A in Mc is not necessarily the
universal relation, but an equivalence relation containing Rc. However, every Ru-
cluster is a generated submodel ofRc andRu is the universal relation there. For the
purpose of proving completeness we only need to deal with generated submodels
of Mc, so we can assume without further ado that A is the universal modality on
Mc.

Furthermore, all axioms are Sahlqvist formulas, hence the logic is canonical.
We need to show that every modal formula φ satisfiable in Mc is satisfiable in

some model over F r .
Hereafter we restrict the language to those propositional variables that occur

in φ.
Let k be the modal depth of φ and suppose Mc, x0 |= φ.
The idea in a nutshell: We are going to build up step by step a model Mr

over F r , a submodel Mω of Mc, and a p- morphism from Mr onto Mω. Besides,
(Mω, x0) will be k-bisimilar to (Mc, x0), henceMω, x0 |= φ, so φ will be satisfied
in Mr .

Now, the technicalities.
First, enumerate F r : s0, s1, ... choosing s0 to be reflexive iff x0 is reflexive.

We shall define inductively on n two chains of finite models:
Mc

0 ⊂ Mc
1 ⊂ . . . ⊂ Mc, based on frames Fc0 ⊂ Fc1 ⊂ . . . ⊂ Fc, and

Mr
0 ⊂ Mr

1 ⊂ . . ., based on frames F r0 ⊂ F r1 ⊂ . . . ⊂ F r ,
and a chain of functions fo ⊂ f1 ⊂ . . . where fn : F rn −→ Fcn , such that:

(1) x0 ∈ Mc
0 and s0 ∈ Mr

0 ;
(2) fn is a p-morphism of Mr

n onto Mc
n;

(3) Mr = ⋃
n∈ω Mr

n covers F r ;
(4) Mω = ⋃

n∈ω Mc
n is a submodel of Mc such that (Mω, x0) ∼k (M

c, x0).

Before we proceed with the construction, let us note that (2) implies that f =⋃
n∈ω fn is a p-morphism from Mr onto Mω, so the claim will follow.

Now, the inductive construction.
For n = 0 put Fc0 = {x0}, F r0 = {s0}, f0(s0) = x0, and the valuation at s0 to

match the valuation at x0 in Mc.
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For the inductive step, suppose Mc
n,M

r
n, and fn are defined as required. We

will break the construction of Mc
n+1,M

r
n+1, and fn+1 down to several steps.

i) This step will ensure that eventually Mr covers the whole F r .
Let tn be the first point in s0, s1, ... which is not in F rn . Let P(tn) and S(tn) be

respectively the set of predecessors and the set of successors of tn in F rn , and let
P ′ = fn[P(tn)], S′ = fn[S(tn)].

ii) Select a point yn from Mc −Mc
n to "simulate" the position of tn in Mr

n, i.e.
such that all points in P ′ are predecessors of yn and all points in S′ are successors
of yn. The axiom scheme MODEXT, strengthened by lemma 3, ensures that such
yn exists. Furthermore, if tn is reflexive we require that yn is reflexive, too.

iii) Now, there are 4 possible types of defects to fix:

(a) Unforeseen Rc-arrows coming to yn from outside P ′. This also covers cases
where fn(s′) = fn(s

′′) and Rrs′tn but not Rrs′′tn.
(b) In particular, yn can be reflexive, while tn is not.
(c) Unforeseen Rc-arrows going from yn to a set of successors S0(yn) outside S′.
(d) The points in Fcn − Fcn−1, i.e. those added at the previous inductive step of the

construction, and yn itself, do not have all necessary successors to extend the
k-bisimulation with Mc.

To fix all these defects we will extendMc
n andMr

n with more points as follows.
To fix (a) and (b): Select a new point un ∈ F r to match the in- and out- Rc-ar-

rows of yn in Fcn . Furthermore, if (b) is the case, require that each of tn and un is a
successor of the other.

Now, extend fn with fn(tn) = fn(un) = yn.
To fix (c) and (d): the set of ‘unsaturated’ points at the moment is Xn = {yn} ∪

(F cn − Fcn−1) (where Fc−1 = ∅).

For each x ∈ Xn let Sk(x) be a set of successors of x in Mc −Mc
n containing

one representative of each modal (k − 1)-type realized by a successor of x in Mc

and still missing in Mc
n.

Let Ucn = S0(yn) ∪ ⋃
x∈Xn S

k(x). Note that Ucn is finite.
Now, we define

Mc
n+1 = Mc

n ∪ Ucn ∪ {yn}.

iv) We need to add p-morphic pre-images for Ucn to Mr
n in order to extend the

p-morphism fn over Mc
n+1.

Let Urn be a subset of F r − F rn such that there is a frame isomorphism h :
Ucn −→ Urn and moreover Urn matches the configuration of Ucn in Mc

n+1, i.e:
• For every y ∈ Ucn and t ∈ F rn ∪ {tn, un}, h(y) is a predecessor (successor) of

t iff y is a predecessor (successor) of fn(t). In particular, every point in h(S0(yn))

is a successor of both tn and un.
That will fix the defects (c) and (d).
Note that in order to select the set Urn we make use of an extension axiom for

F r with unbounded number of variables.
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v) Finally, we define:

F rn+1 = F rn ∪ Urn ∪ {tn, un},
fn+1 = fn ∪ h−1 ∪ {(tn, yn), (un, yn)},

and extend Mr
n to Mr

n+1 accordingly to extend the p- morphism from fn to
fn+1.

This completes the inductive construction.
Note that the condition (2) for fn+1 is guaranteed by the inductive hypothesis

and the construction.

Now, we take the unions:

Mr =
⋃

n∈ω
Mr
n,

Mω =
⋃

n∈ω
Mc
n.

Condition (3) is immediate from the construction.
It remains to prove (4). We shall apply prop. 1. The key observation is that every

x ∈ Mω has the same k- type in Mω as in Mc. In order to prove this, we show by
an easy induction on m ≤ k that if x ∈ Mn then x has the same l-type in Mn+m as
in Mc, using again prop. 1. �

Proposition 11. MLr is not finitely axiomatizable.

Proof. According to a well-known criterion for non-finite axiomatizability due
to Tarski (see e.g. [Chagrov and Zakharyaschev 97]) it is sufficient to construct a
strictly increasing sequence of modal logics L1 ⊂ L2 ⊂ ... such that

⋃∞
k=1 Lk =

MLr .
Let for any k ∈ N,φk = MODEXTk .
Further, let MLrk be the sublogic of MLr axiomatized by the modal formulas

which follow from θk . Then we define the sequence {Lk}k∈N as a subsequence of
{MLrk}k∈N inductively as follows:

– L1 = MLr1.
– Suppose Lk = MLrnk for some nk ∈ N . Then we define Lk+1 = MLrnk+1

where
nk+1 is the least positive integer such that φnk+1−1 is not valid in some model of
θnk . To see that such an index exists, take any model of θnk , say of size m. Then
no point in that model is related to every point in the model, so φm fails there for
p1, . . . , pm evaluated in pairwise different singleton sets.

Thus, Lk 	� φnk+1−1, while θnk+1 |= φnk+1−1, so Lk+1 � φnk+1−1, hence Lk+1
is a proper extension of Lk .

Finally,
⋃∞
k=1 Lk = ⋃∞

k=1 MLrk = MLr . �

This proof can be simplified when we describe the finite frames of MLr below.
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4.2. The finite frames and the finite frames property of MLr

Definition 5. Let F = 〈W,R〉 and x ∈ W . x is a central point in F if Rxy and
Ryx hold for every y ∈ W .

Proposition 12. For every finite frame F the following are equivalent.

1. F |= MLr .
2. F has a central point.
3. F is a p-morphic image of F r .

Proof. (1) ⇔ (2): Every finite frame of size n which validates MODEXTn has a
central point and every finite frame with a central point validates MODEXT.

(3) ⇒ (1): p-morphisms preserve modal validity.
(1) ⇒ (3): Suppose otherwise. Then F r |= χF , hence χF ∈ MLr , so F |= χF

- a contradiction. �


Proposition 13. Every finite frame F obtained from F r by filtration has a central
point, and hence validates MODEXT.

Proof. It is sufficient to prove the claim for the case when F = 〈W,R〉 is obtained
from F r by a minimal filtration f . Let W = {w1, . . . , wn} and {x1, . . . , xn} be
points in F r such that f (xi) = wi, i = 1, . . . , n. Then there is y ∈ F r such that
Rryxi and Rrxiy for each i = 1, . . . , n. Therefore, f (y) is a central point in F .

�


Corollary 1. The logicMLr has the finite frame property and the complexity of its
satisfaction problem is in EXPTIME.

Proof. Every MLr -consistent formula φ is satisfiable in F r , hence it is satisfiable
in a finite frame of size at most 2|φ| obtained from F r by filtration. By proposition
13 every such frame validates MLr . Furthermore, these frames are recognizable
directly, without checking validity of the axioms in them, in polynomial time. Now,
the proof follows the one for K plus universal modality (see [Spaan 93]). �


The proofs of all results in this section easily extend to temporal logic with mi-
nor modifications required by the temporal versions of the notions of p-morphism,
bisimulation and filtration. Thus, we obtain:

Proposition 14. 1. The axioms of MLr added to the minimal temporal logic
T provide a sound and complete axiomatization of the temporal logic
T Lr of F r .

2. The finite frames of T Lr are precisely the frames with central point.
3. T Lr has the finite frame property and is decidable in EXPTIME.
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4.3. Kernels in random finite frames and in F r

Every p-morphic image G of a frame F determines a kernel partition in F . As
we have shown in lemma 1, the existence of the kernel partition determined by
G in a random frame is characterized by the non-validity of the respective χG in
that frame. On the other hand, the asymptotic probability of such a partition can
be estimated using well-developed combinatorial-probabilistic methods. These re-
lationships can be used to obtain results on almost sure validity and invalidity of
various modal formulas. Here we shall consider two very simple examples, and
one of them will turn out to distinguish MLr from MLas .

Definition 6. Let F = 〈W,R〉 be a frame, and A be a non-empty subset of W . A
is called:

– independent if F |= ∀x, y ∈ A(¬Rxy).
– dominating over a subset B of F if F |= ∀x(x ∈ B → ∃y ∈ A(Rxy)).
– dominating set if it is dominating over W − A.
– kernel if it is both independent and dominating.
– double kernel if it is a kernel and can be split in two non-empty ‘sub-kernels’
A1 and A2 such that F |= ∀x(x 	∈ A → (∃y ∈ A1(Rxy) ∧ ∃y ∈ A2(Rxy)).

The notion of a kernel has been independently studied in the theory of digraphs,
i.e. loopless frames. It was proved in [Fernandez de la Vega 90] that almost every
finite digraph has a kernel. Since existence of a kernel is a �1

1-property, it follows
that the countable random digraph has a kernel, too. These results, however, need
not hold for frames because almost every frame is not a digraph, i.e. the asymptotic
probability of a frame to be a digraph is 0, and therefore no results about asymptotic
probabilities on digraphs transfer directly to frames.

Consider the frames
K2 = 〈{x, y}, {(x, x), (x, y), (y, x)}〉 and
K3 = 〈{x, y1, y2}, {(x, x), (x, y1), (x, y2), (y1, x)(y2, x)}〉.
Note that K2 is a p-morphic image of K3.

Proposition 15. Let F be a frame such that F |= θ3. Then:

1. F has a kernel iff K2 is a p-morphic image of F .
2. F has a double kernel iff K3 is a p-morphic image of F .
3. In particular, F r has a double kernel.

Proof. We will prove (2); (1) is similar, but simpler. If F has a double kernel, then
the function f : F −→ K3 which sends the points from the two sub-kernels of the
double kernel resp. to y1 and y2 and the rest to x is a p-morphism. To check this it
is sufficient to use the extension axioms in θ3. (In particular, θ3 ensures that every
point in the kernel sends an arrow to the complement of the kernel.) Conversely, if
f is a p-morphism of F onto K3, then f−1(y1) and f−1(y2) are the sub-kernels of
a double kernel in F .

Finally, since K3 has a central point x, it is a p-morphic image of F r , by lemma
12. �
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Thus, the formula χK2 (resp. χK3 ) is valid precisely in those frames satisfy-
ing θ3 which do not have kernels (resp. double kernels). Here are slightly simpler
formulas with the same properties:

NO-KER = E(p ↔ ♦p), and
NO-DKER = E((p ∨ q) ∧ ♦(p ∨ q)) ∨ E(¬(p ∨ q) ∧ (�¬p ∨ �¬q)).

Proposition 16. For every frame F satisfying θ3:

1. F has a kernel iff F 	|= NO-KER.
2. F has a double kernel iff F 	|= NO-DKER.

Proof. NO-KER is falsified by a model on F iff the valuation of p is a kernel in
F . Likewise, NO-DKER is falsified by a model on F iff the valuations of p and q
are the sub-kernels of a double kernel in F . �


Using kernels one can show the invalidity in F r of various formulas which are
not first-order definable. Here is an example.

Proposition 17. Each of the following modal reduction principles, with alternating
modalities in the antecedent and consequent, fails in F r :

• ♦� . . . p → �♦ . . .�p.
• ♦� . . .♦p → �♦ . . . p.
• �♦ . . .�♦p → ♦� . . . p.
• ♦� . . . p → ♦� . . .♦�p.

Proof. Each of these is falsified when p is evaluated either in the kernel or in its
complement.3 �


Theorem 7. The existence of a double kernel is almost surely false in the finite.

Proof. We begin with combinatorial-probabilistic calculation of the expectation of
the numberDKn of double kernels in a random frame from S(n, p). Put q = 1−p.

Let G ∈ S(n, p), G = 〈W,R〉, and Y be an m-element set in G. The proba-
bility for Y to be independent is qm

2
. Furthermore, for any k-element subset Z of

Y , the probabilities of Z and Y −Z to be dominating overW − Y are respectively
(1 − qk)n−m and (1 − qm−k)n−m. Since these are independent events, the proba-
bility of Y to be a double kernel with sub-kernels Z and Y −Z is qm

2
(1 − qk)n−m

(1 − qm−k)n−m. Then, the probability of Y to be a double kernel is not greater than

qm
2
m∑

k=0

(
m

k

)

(1 − qk)n−m(1 − qm−k)n−m.

Therefore the expectation of DKn satisfies

E(DKn) ≤
n∑

m=2

(
n

m

)

qm
2
m∑

k=0

(
m

k

)

(1 − qk)n−m(1 − qm−k)n−m.

3 We thank Jean-Marie le Bars who first applied this argument to a particular case.
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Since qk + qm−k ≥ 2q
m
2 , we get (1 − qk)(1 − qm−k) ≤ (1 − q

m
2 )2, hence

m∑

k=0

(
m

k

)

(1−qk)n−m(1−qm−k)n−m ≤ (1−q m2 )2(n−m)
m∑

k=0

(
m

k

)

2m(1−q m2 )2(n−m).

Therefore

E(DKn) ≤
n∑

m=2

(
n

m

)

qm
2
2m(1 − q

m
2 )2(n−m).

We are going to show that the right hand side tends to 0 as n tends to infinity,
and hence limn→∞ E(DKn) = 0.

First, we use a well-known asymptotic estimation of the binomial coefficients
(see e.g. [Palmer 85]).

(
n

m

)

= O(1)√
2πm

(ne

m

)m
.

Using (1 − q
m
2 )2(n−m) ∼ exp(−2q

m
2 (n−m)) and putting c = q

1
2 we obtain:

E(DKn) ≤
n∑

m=2

O(1)√
2πm

(ne

m

)m
c2m2

2m exp(−2cm(n−m))

< O(1)
n∑

m=2

(2c
m
2 )m

(ne

m

)m
cm

2
c
m2
2 exp(−ncm) exp(−ncm) exp(2mcm)

(Here we used c2m2 = c
m2
2 c

m2
2 cm

2
and 2mc

m2
2 = (2c

m
2 )m.)

= O(1)
n∑

m=2

(2c
m
2 )m

(
encm

m
exp

(−ncm
m

))m
exp(2mcm)c

m2
2 exp(−ncm).

Now: sincemcm tends to 0, exp(2mcm) is bounded above, so it is subsumed by
O(1). Likewise for (2c

m
2 )m.

To show the same for X =
(
encm

m
exp

(
−ncm
m

))m
we denote4 α = ncm

m
and

obtain:X = (
αe1−α)m. By standard calculus, we find that αe1−α is bounded above

by 1, hence X ≤ 1. Thus,

E(DKn) < O(1)
n∑

m=2

cm
2
e−nc

m

< O(1)
n∑

m=2

cme−nc
m

Finally, the latter sum is majorized by
∫ n

1 c
xe−ncx dx = ln c e−cn−e−ncn

n
which

clearly tends to 0 as n tends to infinity.
Therefore limn→∞ E(DKn) = 0, and hence limn→∞ Pr(DKn ≥ 1) = 0.

�

4 This trick we borrow from [Fernandez de la Vega 90].
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Remark 2. We do not have a proof that existence of a single kernel in a random
frame is not almost surely valid, but we have a very strong numerical evidence for
that5. Numerical tests using a formula estimating the expected number of kernels in
a random frame from S(n, p), performed for n up to 109 indicate that for p = 0.5
and large enough n E(NKn) < 0.15 i.e bounded way below 1. It is notable that
for n = 109 and p = 0.5 the expected number of kernels of size m is greater than
10−6 only for 24 ≤ m ≤ 26.

This is a demonstration of an interesting phenomenon, indicated in
[Fernandez de la Vega 90], that the expected size of the kernel concentrates around
log 1

q
n− log 1

q
log 1

q
n and only a handful of the closest values of m to this number

produce significant terms in this sum.

Corollary 2. The formula NO-DKER is almost surely valid in the finite, hence it is
in MLas , but not in MLr .

Corollary 3. The formula NO-DKER does not follow from the extension axioms.

Furthermore, consider the MLr -frames
Km+1 =〈{x, y1, . . . , ym}, {(x, x), (x, y1), . . . , (x, ym), (y1, x), . . . , (ym, x)}〉,

for m > 2.
Note that K3 is a p-morphic image of each of these. Therefore, every χKm is

almost surely valid in the finite, while none of them is in MLr .

5. Concluding remarks

In this paper we have obtained explicit axiomatic and model-theoretic descriptions
of the logic of the countable random frame. We believe that these results can be fur-
ther extended to various enriched modal formalisms such as logics with difference
modality, guarded fragments, mu-calculus, and multimodal logics such as PDL.

In the light of the results from the previous section, MLr does not axiomatize
the almost sure validity in the finite, and its complete axiomatization is still an
open problem. We conjecture that this axiomatization can be obtained by adding
to the axioms of MLr all formulas χG for the finite frames G for the logic MLr

which are almost surely not p-morphic images of random finite frames. Thus, the
�1

1-formulae expressing non-existence of certain kernel partitions appear to play
a rôle analogous to the extension axioms for first-order logic in the essentially
second-order layer of the monadic �1

1-logic.
Finally, the study of almost sure validities and 0-1 laws can be relativized to

classes of frames e.g. reflexive, transitive, partial orderings, etc. Some results in that
direction have been obtained in [Halpern and Kapron 94]. Furthermore, it is inter-
esting to determine for which classes of frames there is a naturally defined countable
random frame, and to investigate the relationship between its modal logic and the
almost sure validity in such classes.

5 Meanwhile, Le Bars has proved in [le Bars 02] that existence of a single kernel in a
random frame is almost surely false.
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