Skip to main content
Log in

Semiparametric analysis of transformation models with left-truncated and right-censored data

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We analyze left-truncated and right-censored (LTRC) data using semiparametric transformation models. It is demonstrated that the approach of Chen et al. (Biometrika 89: 659–668, 2002) can be extended to LTRC data. Furthermore, when covariates are discrete, similar to the approach of Cai and Cheng (Biometrika 91: 277–290, 2004), we propose an alternative estimator. A simulation study is conducted to investigate the performance of the proposed estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical methods based on counting processes. Springer, New York

    Google Scholar 

  • Bennett S (1983) Analysis of survival data by the proportional odds model. Statist Med 2: 273–277

    Article  Google Scholar 

  • Cai T, Cheng S (2004) Semiparametric regression analysis for doubly censored data. Biometrika 91: 277–290

    Article  MathSciNet  MATH  Google Scholar 

  • Chen K, Jin Z, Ying Z (2002) Semiparametric analysis of transformation models with censored data. Biometrika 89: 659–668

    Article  MathSciNet  MATH  Google Scholar 

  • Cox D (1972) Regression models and life tables (with discussion). J R Statist Soc B 34: 187–220

    MATH  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York

    MATH  Google Scholar 

  • Hyde J (1980) Survival analysis with incomplete observations. In: Miller RG, Efron B, Brown BW, Moses LE (eds) Biostatistics casebook. John Wiley and Sons, New York, pp 31–46

    Google Scholar 

  • Klein JP, Moeschberger ML (1997) Survival analysis: tenchniques for censored and truncated data. Springer, Berlin

    Google Scholar 

  • Lai TL, Ying Z (1991) Estimating a distribution function with truncated and censored data. Ann Stat 19: 417–422

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy SA, Rossini AJ, van der Vaart AW (1996) Maximum likelihood estimation in the proportional odds model. J Am Statist Assoc 92: 968–976

    Article  Google Scholar 

  • Pan W, Chappell R (2002) Estimation in the cox proportional hazards model with left-truncated and interval-censored data. Biometrics 58: 64–70

    Article  MathSciNet  MATH  Google Scholar 

  • The CSHA working group: (1994) Canadian study of health and aging: study methods and prevalence of dementia. J Can Med Assoc 150: 899–913

    Google Scholar 

  • Tsai W-Y, Jewell NP, Wang M-C (1987) A note on the product-limit estimate under right censoring and left truncation. Biometrika 74: 883–886

    Article  MATH  Google Scholar 

  • Wang M-C (1991) Nonparametric estimation from cross-sectional survival data. J Am Statist Assoc 86: 130–143

    Article  MATH  Google Scholar 

  • Ying S, Prentice R (1999) Semiparametric inference in the proportional odds regression model. J Am Statist Assoc 92: 968–976

    Google Scholar 

  • Zeng D, Lin DY (2007) Maximum likelihood estimation in semiparametric regression model with censored data. J R Statist Soc B 69: 507–564

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pao-sheng Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Ps. Semiparametric analysis of transformation models with left-truncated and right-censored data. Comput Stat 26, 521–537 (2011). https://doi.org/10.1007/s00180-010-0223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-010-0223-3

Keywords