Abstract
PairViz is an R package that produces orderings of statistical objects for visualization purposes. We abstract the ordering problem to one of constructing edge-traversals of (possibly weighted) graphs. PairViz implements various edge traversal algorithms which are based on Eulerian tours and Hamiltonian decompositions. We describe these algorithms, their PairViz implementation and discuss their properties and performance. We illustrate their application to two visualization problems, that of assessing rater agreement, and model comparison in regression.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Allison T, Cicchetti D (1976) Sleep in mammals: ecological and constitutional correlates. Science 194: 732–734
Alspach B, Bermond JC, Sotteau D (1990) Decomposition into cycles I: Hamilton decompositions. In: Hahn G, Sabidussi G, Woodrow RE (eds) Cycles and rays. Kluwer, Boston, pp 9–18
Ankerst M, Berchtold S, Keim DA (1998) Similarity clustering of dimensions for an enhanced visualization of multidimensional data. IEEE Symp Inf Vis 1998: 52–60
Bendix F, Kosara R, Hauser H (2005) Parallel sets: visual analysis of categorical data. IEEE Symp Inf Vis 2005: 1–18
Cleveland WS (1995) Visualizing data. Hobart Press, Summit, NJ
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal, Complex Systems 1695
Edmonds J, Johnson EL (1973) Matching, euler tours, and the Chinese postman. Math Program 5: 88–124
Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76: 378–382
Friendly M, Kwan E (2003) Effect ordering for data displays. Comput Stat Data Anal 43: 509–539
Gamer M, Lemon J, Fellows I (2009) irr: various coefficients of interrater reliability and agreement. R package version 0.82
Gentleman R, Whalen E, Huber W, Falcon S (2010) graph: a package to handle graph data structures. R package version 1.26.0
Gross, JL, Yellen, J (eds) (2004) Handbook of graph theory. CRC Press, London
Hierholzer C (1873) Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Math Annalen VI:30–32
Hofmann H (2006) Multivariate categorical data–mosaic plots. In: Unwin A, Theus M, Hofmann H (eds) Graphics of large datasets, visualizing a million. Springer, New York, pp 105–124
Hurley CB (2004) Clustering visualizations of multidimensional data. J Comput Graphical Stat 13: 788–806
Hurley CB, Oldford RW (2009) PairViz: visualization using Eulerian tours and Hamiltonian decompositions, R package version 1.1
Hurley CB, Oldford RW (2010) Pairwise display of high dimensional information via Eulerian tours and Hamiltonian decompositions. J Comput Graphical Stat 19(4): 861–886
Hurley CB, Oldford RW (2011) Graphs as navigational infrastructure for high dimensional data spaces. Comput Stat. doi:10.1007/s00180-011-0228-6
Lucas DE (1892) Recréations Mathématiques, Vol. II. Gauthier Villars, Paris
Theus M (2002) Interactive data visualization using mondrian. J Stat Softw 7(11): 1–9
Unwin A, Volinsky C, Winkler S (2003) Parallel coordinates for exploratory modelling analysis. Comput Stat Data Anal 43: 553–564
Wegman EJ (1990) Hyperdimensional data analysis using parallel coordinates. J Am Stat Assoc 85: 664–675
Wilkinson L, Anand A, Grossman R (2005) Graph-theoretic scagnostics. IEEE Symp Inf Vis 2005: 157–164
Wills G (2000) A good, simple axis. Stat Comput Stat Graphics Newsl 11: 20–25
Yang J, Peng W, Ward MO, Rundenmeister EA (2003) Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. IEEE Symp Inf Vis 2003: 105–112
Author information
Authors and Affiliations
Corresponding author
Additional information
C. B. Hurley’s Research was supported in part by a Research Frontiers Grant from Science Foundation Ireland. R. W. Oldford’s Research was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.
Rights and permissions
About this article
Cite this article
Hurley, C.B., Oldford, R.W. Eulerian tour algorithms for data visualization and the PairViz package. Comput Stat 26, 613–633 (2011). https://doi.org/10.1007/s00180-011-0229-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00180-011-0229-5