Skip to main content
Log in

Estimating value at risk with semiparametric support vector quantile regression

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Value at Risk (VaR) has been used as an important tool to measure the market risk under normal market. Usually the VaR of log returns is calculated by assuming a normal distribution. However, log returns are frequently found not normally distributed. This paper proposes the estimation approach of VaR using semiparametric support vector quantile regression (SSVQR) models which are functions of the one-step-ahead volatility forecast and the length of the holding period, and can be used regardless of the distribution. We find that the proposed models perform better overall than the variance-covariance and linear quantile regression approaches for return data on S&P 500, NIKEI 225 and KOSPI 200 indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander CO, Leigh CT (1997) On the covariances matrices used in value at risk models. J Deriv 4: 50–62

    Article  Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31: 307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T (1987) A conditional heteroskedastic time series model for speculative prices and rates of returns. Rev Econom Stat 69: 542–547

    Article  Google Scholar 

  • Boudoukh J, Richardson M, Whitelaw RF (1997) Investigation of a class of volatility estimators. J Deriv 4: 63–71

    Article  Google Scholar 

  • Chen MJ, Chen J (2002) Application of quantile regression to estimation of value at risk. Working paper, National Chung-Cheng University

  • Diebold FX, Hickman A, Inoue A, Schuermann T (1998) Scale models. Risk 11: 104–107

    Google Scholar 

  • Engle R, Manganelli S (2004) CAViaR: conditional autoregressive value at risk by regression quantiles. J Bus Econom Stat 22: 367–381

    Article  MathSciNet  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, London

    MATH  Google Scholar 

  • Glasserman P, Heidelberger P, Shahabuddin P (2002) Portfolio value-at-risk with heavy-tailed risk factors. Math Finance 12: 239–269

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W (1990) Applied nonparametric regression. Cambridge University Press, New York

    MATH  Google Scholar 

  • Hull J, White A (1998) Value at risk when daily changes in market variables are not normally distributed. J Deriv 5: 9–19

    Article  Google Scholar 

  • Jorion P (2007) Value at risk: the new benchmark for managing financial risk. McGraw-Hill, New York

    Google Scholar 

  • Kohenker R, Bassett G (1978) Regression quantiles. Econometrica 46: 33–50

    Article  MathSciNet  Google Scholar 

  • Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81: 673–680

    Article  MathSciNet  MATH  Google Scholar 

  • Kroner KF, Kneafsey KP, Claessen S (1995) Forecasting volatility in common markets. J Forecast 14: 77–95

    Article  Google Scholar 

  • Kuester K, Mittnik S, Paolella MS (2006) Value-at-risk prediction: a comparison of alternative strategies. J Financial Econom 4: 53–89

    Google Scholar 

  • Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings of 2nd Berkeley symposium. University of California Press, Berkeley, pp 481–492

  • Li Y, Liu Y, Zhu J (2007) Quantile regression in reproducing kernel Hilbert spaces. J Am Stat Assoc 102: 255–268

    Article  MathSciNet  MATH  Google Scholar 

  • Nychka D, Gray G, Haaland P, Martin D, O’Connell M (1995) A nonparametric regression approach to syringe grading for quality improvement. J Am Stat Assoc 90: 1171–1178

    Article  MATH  Google Scholar 

  • Shim J, Hwang C (2009) Support vector censored quantile regression under random censoring. Comput Stat Data Anal 53: 912–919

    Article  MathSciNet  MATH  Google Scholar 

  • Smola AJ, Frieβ TT, Schölkopf B (1999) Semiparametric support vector and linear programming machines. Adv Neural Inf Process Syst 11: 585–591

    Google Scholar 

  • Takeuchi I, Furuhashi T (2004) Non-crossing quantile regressions by SVM. In: Proceedings of 2004 IEEE international joint conference on neural networks, pp 401–406

  • Taylor JW (1999) A quantile regression approach to estimating the distribution of multiperiod returns. J Deriv 7: 64–78

    Article  Google Scholar 

  • Taylor JW (2000) A quantile regression neural network approach to estimating the conditional density of multiperiod returns. J Forecast 19: 299–311

    Article  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    MATH  Google Scholar 

  • White H (1992) Nonparametric estimation of conditional quantiles using neural networks. In: Artificial neural networks: Approximation and learning theory. Blackwell, Oxford, pp 191–205

  • Yuan M (2006) GACV for quantile smoothing splines. Comput Stat Data Anal 50: 813–829

    Article  MATH  Google Scholar 

  • Zakai A, Ritov Y (2009) Consistency and localizability. J Mach Learn Res 10: 827–856

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changha Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, J., Kim, Y., Lee, J. et al. Estimating value at risk with semiparametric support vector quantile regression. Comput Stat 27, 685–700 (2012). https://doi.org/10.1007/s00180-011-0283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0283-z

Keywords

Navigation