Skip to main content
Log in

Hybrid bootstrap aided unit root testing

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we propose a hybrid bootstrap procedure for augmented Dickey-Fuller (ADF) tests for the presence of a unit root. This hybrid proposal combines a time domain parametric autoregressive fit to the data and a nonparametric correction applied in the frequency domain to capture features that are possibly not represented by the parametric model. It is known that considerable size and power problems can occur in small samples for unit root testing in the presence of an MA parameter using critical values of the asymptotic Dickey-Fuller distribution. The benefit of the sieve bootstrap in this situation has been investigated by Chang and Park (J Time Ser Anal 24:379–400, 2003). They showed asymptotic validity as well as substantial improvements for small sample sizes, but the actual sizes of their bootstrap tests were still quite far away from the nominal size. The finite sample performances of our procedure are extensively investigated through Monte Carlo simulations and compared to the sieve bootstrap approach. Regarding the size of the tests, our results show that the hybrid bootstrap remarkably outperforms the sieve bootstrap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) Proceedings of the 2nd International Symposium on Information Theory, Akademiai Kaido, Budapest, pp 267–281

  • Beltrão KI, Bloomfield P (1987) Determining the bandwidth of a kernel spectrum estimate. J Time Ser Anal 8: 21–38

    Article  MathSciNet  MATH  Google Scholar 

  • Bühlmann P (1997) Sieve bootstrap for time series. Bernoulli 3: 48–123

    Article  Google Scholar 

  • Bühlmann P (1998) Sieve bootstrap for smoothing in nonstationary time series. Ann Stat 26: 48–83

    Article  MATH  Google Scholar 

  • Chang Y, Park JY (2003) A sieve bootstrap for the test of a unit root. J Time Ser Anal 24: 379–400

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlhaus R, Janas D (1996) A frequency domain bootstrap for ratio statistics in time series analysis. Ann Stat 24: 1934–1963

    Article  MathSciNet  MATH  Google Scholar 

  • Davidson R, MacKinnon JG (1998) Graphical methods for investigating the size and power of test statistics. Manch Sch 66: 1–26

    Article  Google Scholar 

  • Dickey DA, Fuller WA (1979) Distribution of estimators for autoregressive time series with a unit root. J Am Stat Assoc 74: 427–431

    MathSciNet  MATH  Google Scholar 

  • Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49: 1057–1072

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 20(1): 121–145

    MathSciNet  Google Scholar 

  • Franke J, Härdle W (1992) On Bootstrapping kernel spectral estimates. Ann Stat 2: 121–145

    Article  Google Scholar 

  • Fuller WA (1996) Introduction to statistical time series, 2nd (edn). Wiley, New York

    MATH  Google Scholar 

  • Hall P, Horowitz JL (1996) Bootstrap critical values for tests based on generalized method of moments estimators with dependent data. Econometrica 64: 891–916

    Article  MathSciNet  MATH  Google Scholar 

  • Jentsch C, Kreiss J-P (2010) The multiple hybrid bootstrap—resampling multivariate linear processes. J Multivar Anal 101: 2320–2345

    Article  MathSciNet  MATH  Google Scholar 

  • Kreiss J-P (1998) Assymptotical Inference for a Class of Stochastic Processes. Habilitationsschrift, Universität Hamburgm

  • Kreiss J-P (1992) Bootstrap procedures for AR(∞) processes. In: Jöckel KH, Rothe G, Senders W (eds) Bootstrapping and related techniques, lecture notes in economics and mathematical systems 376, Heidelberg, Springer

  • Kreiss J-P, Paparoditis E (2003) Autoregressive-aided periodogram bootstrap for time series. Ann Stat 31(6): 1923–1955

    Article  MathSciNet  MATH  Google Scholar 

  • Künsch HR (1989) The jackknife and the bootstrap for general stationary observations. Ann Stat 17: 1217–1241

    Article  MATH  Google Scholar 

  • Paparoditis E (2002) Frequency domain bootstrap for time series. In: Dehling H, Mikosch T, Sorensen M (eds) Empirical process techniques for dependent data. Birkhäuser, Boston, pp 365–381

    Chapter  Google Scholar 

  • Paparoditis E, Politis DN (1999) The local bootstrap for the periodogram. J Time Ser Anal 20: 193–222

    Article  MathSciNet  MATH  Google Scholar 

  • Paparoditis E, Politis DN (2001) Tapered block bootstrap. Biometrika 88: 19–1105

    Article  MathSciNet  Google Scholar 

  • Paparoditis E, Politis DN (2001) The tapered block bootstrap for general statistics from stationary sequences. Econom J 5: 48–131

    MathSciNet  Google Scholar 

  • Paparoditis E, Politis DN (2003) Residual-based block bootstrap for unit root testing. Econometrica 71: 813–855

    Article  MathSciNet  MATH  Google Scholar 

  • Psaradakis Z (2001) Bootstrap tests for an autoregressive unit root in the presence of weakly dependent errors. J Time Ser Anal 22: 577–594

    Article  MathSciNet  MATH  Google Scholar 

  • Said SE, Dickey DA (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71: 599–608

    Article  MathSciNet  MATH  Google Scholar 

  • Schwert GW (1989) Tests for unit roots: a Monte Carlo investigation. J Bus Econ Stat 7: 5–17

    MathSciNet  Google Scholar 

  • Swensen AR (2003) Bootstrapping unit root tests for integrated processes. J Time Ser Anal 24: 99–126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mantalos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jentsch, C., Kreiss, JP., Mantalos, P. et al. Hybrid bootstrap aided unit root testing. Comput Stat 27, 779–797 (2012). https://doi.org/10.1007/s00180-011-0290-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0290-0

Keywords