Skip to main content

Advertisement

The new Neyman type A beta Weibull model with long-term survivors

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

For the first time, we propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest follows the Neyman type A distribution and the time to this event has the beta Weibull distribution. This new model can be used to analyze survival data when the hazard rate function is increasing, decreasing, bathtub or unimodal-shaped. It includes some commonly used lifetime distributions and some well-known cure rate models as special cases. Maximum likelihood and non-parametric bootstrap are used to estimate the regression parameters. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. The usefulness of the new model is illustrated by means of an application in the medical area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhalerao NR, Gurland J, Tripathi RC (1980) A method of increasing power of a test for the negative binomial and Neyman type A distributions. J Am Stat Assoc 75:934–938

    Article  MathSciNet  MATH  Google Scholar 

  • Barton DE (1957) The modality of Neyman’s contagious distribution of type A. Trabajos de Estadística 8:13–22

    Article  MathSciNet  MATH  Google Scholar 

  • Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 88:1412–1418

    Google Scholar 

  • Boag J (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B 11:15–44

    MATH  Google Scholar 

  • Cordeiro GM, Nadarajah S, Ortega EMM (2010) General results for the beta Weibull distribution. J Stat Comput Simul. doi:10.1080/00949655.2011.649756

  • Chen MH, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94:909–919

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RD (1986) Assessment of local influence (with discussion). J R Stat Soc 48:133–169

    MATH  Google Scholar 

  • David FN, Moore PG (1954) Notes on contagious distributions in plant populations. Ann Bot New Ser 18:47–53

    Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, New York

    MATH  Google Scholar 

  • de Castro M, Cancho VG, Rodrigues J (2009) A bayesian long-term survival model parametrized in the cured fraction. Biom J 51:443–455

    Article  MathSciNet  Google Scholar 

  • DiCiccio TJ, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11:189–228

    Article  MathSciNet  MATH  Google Scholar 

  • Dobbie MJ, Welsh AH (2001) Models for zero-inflated count data using the Neyman type A distribution. Stat Model 1:65–80

    Article  MATH  Google Scholar 

  • Doornik JA (2007) An object-oriented matrix language Ox 5. Timberlake Consultants Press, London

    Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman& Hall, New York

    MATH  Google Scholar 

  • Fachini JB, Ortega EMM, Louzada-Neto F (2008) Influence diagnostics for polyhazard models in the presence of covariates. Stat Methods Appl 17:413–433

    Article  MathSciNet  MATH  Google Scholar 

  • Famoye F, Lee C, Olumolade O (2005) The beta-Weibull distribution. J Stat Theory Appl 4:121–136

    MathSciNet  Google Scholar 

  • Gupta RD, Kundu D (1999) Generalized exponential distributions. Aust NZ J Stat 41:173–188

    Article  MathSciNet  MATH  Google Scholar 

  • Hashimoto EM, Ortega EMM, Cancho VG, Cordeiro GM (2010) The log-exponentiated Weibull regression model for interval-censored data. Comput Stat Data Anal 54:1017–1035

    Article  MathSciNet  MATH  Google Scholar 

  • Hashimoto EM, Ortega EMM, Paula GA, Barreto ML (2011) Regression models for grouped survival data: estimation and sensitivity analysis. Comput Stat Data Anal 55:993–1007

    Article  MathSciNet  Google Scholar 

  • Heilbron DC (1994) Zero-altered and other regression models for count data with added zeros. Biom J 36:531–547

    Article  MATH  Google Scholar 

  • Ibrahim JG, Chen MH, Sinha D (2001) Bayesian survival analysis. Springer, New York

    Book  MATH  Google Scholar 

  • Ibrahim JG, Zhu HT, Tang NS (2011) Bayesian local influence for survival models (with discussion). Lifetime Data Anal 17:43–70

    Article  MathSciNet  Google Scholar 

  • Johnson NL, Kemp AW, Kotz S (2005) Univariate discrete distributions. Wiley, New Jersey

    Book  MATH  Google Scholar 

  • Kundu D, Raqab MZ (2005) Generalized Rayleigh distribution: different methods of estimation. Comput Stat Data Anal 49:187–200

    Article  MathSciNet  MATH  Google Scholar 

  • Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. Trans Reliab 52:33–37

    Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York

    MATH  Google Scholar 

  • Lee C, Famoye F, Olumolade O (2007) Beta-Weibull distribution: some properties and applications to censored data. J Modern Appl Stat Methods 6:173–186

    Google Scholar 

  • Mudholkar GS, Srivastava DK, Friemer M (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37:436–445

    Article  MATH  Google Scholar 

  • Nadarajah S, Kotz S (2006) The beta exponential distribution. Reliab Eng Syst Saf 91:689–697

    Article  MathSciNet  Google Scholar 

  • Neyman J (1939) On a new class of contagious distributions applicable in entomology and bacteriology. Ann Math Stat 10:35–57

    Article  Google Scholar 

  • Ortega EMM, Cancho VG, Bolfarine H (2006) Influence diagnostics in exponentiated-Weibull regression models with censored data. Stat Oper Res Trans 30:171–192

    MathSciNet  MATH  Google Scholar 

  • Ortega EMM, Cancho VG, Paula GA (2009) Generalized log-gamma regression models with cure fraction. Lifetime Data Anal 15:79–106

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega EMM, Cordeiro GM, Carrasco JMF (2011) The log-generalized modified Weibull regression model. Braz J Probab Stat 25:64–89

    Article  MathSciNet  Google Scholar 

  • Rodrigues J, Cancho VG, de Castro M, Louzada-Neto F (2009) On the unification of the long-term survival models. Stat Probab Lett 79:753–759

    Article  MATH  Google Scholar 

  • Shenton LR (1949) On the efficiency of the method of moments and Neyman’s type A distribution. Biometrika 36:450–454

    MathSciNet  Google Scholar 

  • Silva GO, Ortega EMM, Garibay VC, Barreto ML (2008) Log-Burr XII regression models with censored data. Comput Stat Data Anal 52:3820–3842

    Article  MATH  Google Scholar 

  • Silva GO, Ortega EMM, Garibay VC (2010a) Log-Weibull extended regression model: estimation, sensitivity and residual analysis. Stat Methodol 7:614–631

    Article  MathSciNet  MATH  Google Scholar 

  • Silva GO, Ortega EMM, Cordeiro GM (2010b) The beta modified Weibull distribution. Lifetime Data Anal 16:409–430

    Article  MathSciNet  Google Scholar 

  • Sy JP, Taylor JMG (2000) Estimation in a Cox proportional hazards cure model. Biometrics 56:227–236

    Article  MathSciNet  MATH  Google Scholar 

  • Tsodikov AD, Ibrahim JG, Yakovlev AY (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98:1063–1078

    Article  MathSciNet  Google Scholar 

  • Wang P, Puterman M, Cockburn I, Le N (1996) Mixed Poisson regression models with covariates dependent rates. Biometrics 52:381–400

    Article  MATH  Google Scholar 

  • Yakovlev A, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications. Mathematical biology and medicine, vol 1. World Scientific, New Jersey.

  • Yu M, Law NJ, Taylor JMG, Sandler HM (2004) Joint lonfitudinal-survival-cure models and their application to prostate cancer. Stat Sinica 14:835–862

    MathSciNet  MATH  Google Scholar 

  • Yu B, Tiwari RC (2007) Application of EM algorithm to mixture cure model for grouped relative survival data. J Data Sci 5:41–51

    Google Scholar 

  • Xie M, Lai CD (1995) Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab Eng Syst Saf 52:87–93

    Article  Google Scholar 

  • Xie FC, Wei BC (2007) Diagnostics analysis in censored generalized Poisson regression model. J Stat Comput Simul 77:695–708

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H, Zhang H (2004) A diagnostic procedure based on local influence. Biometrika 91:579–589

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H, Ibrahim JG, Lee S, Zhang H (2007) Peturbation selection and influence measures in local influence analysis. Ann Stat 35:2565–2588

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This study was supported by FAPESP (Grant 2010/04496-2) and CNPq, Brazil.The authors would like to thank the editor and two anonymous referees for helpful comments on a previous draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin M. M. Ortega.

Appendix A: Matrix of second derivatives \(\ddot{{\mathbf L}}(\varvec{\theta })\)

Appendix A: Matrix of second derivatives \(\ddot{{\mathbf L}}(\varvec{\theta })\)

Here, we derive the formulae to obtain the second-order partial derivatives of the log-likelihood function. After some algebraic manipulations, we obtain

$$\begin{aligned} {\mathbf L}_{\phi \phi }&= -\frac{r}{\phi ^2}+\sum _{i=1}^n [F(t_i)]^2\exp [{\mathbf x}_i^{\top } \varvec{\beta }-\phi F(t_i)],\\ {\mathbf L}_{\phi \beta _j}&= -\sum _{i=1}^n x_{ij}F(t_i)\exp [{\mathbf x}_i^{\top } \varvec{\beta }-\phi F(t_i)],\\ {\mathbf L}_{\phi \gamma _q}&= \sum _{i=1}^n[\dot{F}(t_i)]_{\gamma _q}\exp [{\mathbf x}_i^{\top } \varvec{\beta }-\phi F(t_i)][\phi F(t_i)-1]-\sum _{i=1^n}\delta _i[\dot{F}(t_i)]_{\gamma _q},\\ {\mathbf L}_{\beta _j\beta _s}&= -\sum _{i=1}^n x_{ij}x_{is}\exp ({\mathbf x}_i^{\top } \varvec{\beta })+\sum _{i=1}^n x_{ij} x_{is}\exp [{\mathbf x}_i^{\top } \varvec{\beta }-\phi F(t_i)],\\ {\mathbf L}_{\beta _j\gamma _q}&= -\phi \sum _{i=1}^n x_{ij}[\dot{F}(t_i)]_{\gamma _q}\exp [{\mathbf x}_i^{\top } \varvec{\beta }-\phi F(t_i)],\\ {\mathbf L}_{\gamma _q \gamma _r}&= -\phi \sum _{i=1}^n\exp [{\mathbf x}_i^{\top } \varvec{\beta }-\phi F(t_i)]\left\{ [\ddot{F}(t_i)]_{\gamma _q\gamma _r}-[\dot{F} (t_i)]_{\gamma _q}[\dot{F}(t_i)]_{\gamma _r}\right\} \\&\quad +\sum _{i=1}^n\frac{\delta _i}{f(t_i)} \left\{ [\ddot{f}(t_i)]_{\gamma _q\gamma _r}-\frac{[\dot{f}(t_i)]_{\gamma _q} [\dot{f}(t_i)]_{\gamma _r}}{f(t_i)}\right\} - \phi \sum _{i=1}^n \delta _i[\ddot{F}(t_i)]_{\gamma _q\gamma _r}, \end{aligned}$$

where \(f(t_i)\) and \(F(t_i)\) are defined in (2) and (3), respectively,

$$\begin{aligned} \left[\dot{f}(t_i)\right]_{\gamma _q}&= \frac{\partial f(t_i)}{\partial \gamma _q},\quad \left[\dot{f}(t_i)\right]_{\gamma _r}=\frac{\partial f(t_i)}{\partial \gamma _r},\quad \left[\dot{F}(t_i)\right]_{\gamma _q}=\frac{\partial F(t_i)}{\partial \gamma _q},\\ \left[\dot{F}(t_i)\right]_{\gamma _r}&= \frac{\partial F(t_i)}{\partial \gamma _r}, \left[\ddot{f}(t_i)\right]_{\gamma _q \gamma _r}=\frac{\partial ^{2} f(t_i)}{\partial \gamma _q\partial \gamma _r},\quad \left[\ddot{f}(t_i)\right]_{\gamma _q \gamma _r}=\frac{\partial ^{2} f(t_i)}{\partial \gamma _q\partial \gamma _r}, \end{aligned}$$

for \(i=1,\ldots ,n\); \(q,r=1,\ldots ,4\,\) and \(\,j,s=1,\ldots ,k\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, E.M., Cordeiro, G.M. & Ortega, E.M.M. The new Neyman type A beta Weibull model with long-term survivors. Comput Stat 28, 933–954 (2013). https://doi.org/10.1007/s00180-012-0338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-012-0338-9

Keywords