Skip to main content
Log in

Empirical Bayes inference for the Weibull model

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this study, the theory of statistical kernel density estimation has been applied for deriving non-parametric kernel prior to the empirical Bayes which frees the Bayesian inference from subjectivity that has worried some statisticians. For comparing the empirical Bayes based on the kernel prior with the fully Bayes based on the informative prior, the mean square error and the mean percentage error for the Weibull model parameters are studied based on these approaches under both symmetric and asymmetric loss functions, via Monte Carlo simulations. The results are quite favorable to the empirical Bayes that provides better estimates and outperforms the fully Bayes for different sample sizes and several values of the true parameters. Finally, a numerical example is given to demonstrate the efficiency of the empirical Bayes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd-Elrahman AM, Sultan KS (2007) Reliability estimation based on general progressive censored data from the Weibull model: comparison between Bayesian and classical approaches. METRON-Int J Stat 35(2):239–257

    MathSciNet  Google Scholar 

  • Abramson I (1982) On bandwidth variation in kernel estimates: a square root law. Ann Stat 10:1217–1223

    Article  MathSciNet  MATH  Google Scholar 

  • Basu AP, Ebrahimi N (1991) Bayesian approach to life testing and reliability estimation using asymmetric loss function. J Stat Plan Inference 29:21–31

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO (1980) Statistical decision theory. Foundations, concepts and methods. Springer, New York

    Book  MATH  Google Scholar 

  • Calabria R, Pulcini G (1994) An engineering approach to Bayes estimation for the Weibull distribution. Microelectron Reliab 34:789–802

    Article  Google Scholar 

  • Calabria R, Pulcini G (1995) Bayes prediction of number of failures in Weibull samples. Commun Stat Theory Methods 24(2):487–499

    Article  MathSciNet  MATH  Google Scholar 

  • Calabria R, Pulcini G (1996) Point estimation under asymmetric loss functions for left-truncated exponential samples. Commun Stat Theory Methods 25(3):585–600

    Article  MathSciNet  MATH  Google Scholar 

  • Carter G, Rolph J (1974) Empirical Bayes methods applied to estimating fire alarm probabilities. J Am Stat Assoc 69:880–885

    Article  Google Scholar 

  • Fay RE, Herriot RA (1979) Estimates of income for small places: an application of James–Stein procedures to census data. J Am Stat Assoc 74:269–277

    Article  MathSciNet  Google Scholar 

  • Ferguson TS (1967) Mathematical statistics: a decision theoretic approach. Academic Press, New York

    MATH  Google Scholar 

  • Guillamon A, Navarro J, Ruiz JM (1998) Kernel density estimation using weighted data. Commun Stat Theory Methods 27(9):2123–2135

    Article  MathSciNet  MATH  Google Scholar 

  • Guillamon A, Navarro J, Ruiz JM (1999) A note on kernel estimators for positive valued random variables. Sankhya: Indian J Stat 6(series(A)):276–281

    MathSciNet  Google Scholar 

  • Haque Z, Faizan M (2010) Characterization of the Weibull distribution by conditional variance of generalized order statistics. Pak J Stat 26(3):517–522

    MathSciNet  Google Scholar 

  • Hoadley B (1981) Quality management plan. Bell Syst Tech J 60:215–273

    Article  Google Scholar 

  • Jones MC (1991) Kernel density estimation for length biased data. Biometerika 78:511–519

    Article  MATH  Google Scholar 

  • Khan MS, Pasha GR, Pasha AH (2007) Reliability and quantile analysis of the Weibull distribution. J Stat 14:32–52

    Google Scholar 

  • Lawless JF (1982) Statistical models and methods for lifetime data. Wiley, New York

    MATH  Google Scholar 

  • Lei Y (2008) Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine. J For Sci 54(12):566–571

    Google Scholar 

  • Nigm AM (1989) An informative Bayesian inference of the Weibull life distribution. Commun Stat Theory Meth 18(3):897–911

    Article  MathSciNet  MATH  Google Scholar 

  • Panahi H, Asadi S (2011) Estimation of the Weibull distribution based on type-II censored samples. Appl Math Sci 5(52):2549–2558

    MathSciNet  MATH  Google Scholar 

  • Pandey BN, Singh BP, Mishra CS (1996) Bayes estimation of shape parameter of classical Pareto distribution under Linex loss function. Commun Stat Theory Methods 25(12):3125–3145

    Article  MathSciNet  MATH  Google Scholar 

  • Rubib D (1981) Using empirical Bayes techniques in the low school validity studies. J Am Stat Assoc 75:801–827

    Google Scholar 

  • Sahran AM, AL-Ruzaizaa A (2010) Statistical inference in connection with the Weibull model using type-II progressively censored data with random scheme. Pak J Stat 26(1):267–279

    Google Scholar 

  • Scott DW (1992) Multivariate density estimation. Wiley Interscience, New York

    Book  MATH  Google Scholar 

  • Sinha SK (1986) Bayes estimation of the reliability function and hazard rate of a Weibull failure time distribution. Trabajoe de Estadista 1(2):47–56

    Article  Google Scholar 

  • Sinha SK, Guttman I (1988) Bayesian analysis of life testing problems involving the Weibull distribution. Commun Stat Theory Methods 17(2):343–356

    Article  MathSciNet  MATH  Google Scholar 

  • Terrell GR (1990) The maximal smoothing principle in density estimation. J Am Stat Assoc 85:470–477

    Article  MathSciNet  Google Scholar 

  • Varian HR (1975) A Bayesian approach to real estimate assessment. In: Studies in Bayesian econometrics studies in honor of Leonard J. Savage, North Holand, Amesterdam, pp 195–208

  • Wu SJ (2002) Estimation of the parameters of the Weibull distribution with progressively censored data. J Jpn Stat Soc 32(2):155–163

    Article  MATH  Google Scholar 

  • Zellner A (1996) A Bayesian estimation and prediction using asymmetric loss function. JASA 81:446–451

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is very grateful to the editor and the anonymous referees for their careful reading, the manuscript, and their constructive comments that improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maswadah.

Appendix

Appendix

For the scale parameter, \(\beta >0\), we can derive the kernel function estimator as follows:

$$\begin{aligned} \hat{{g}}(\beta )&= \frac{1}{nh_1 }\sum _{i=1}^n K\left( \frac{\beta -\beta _i }{h_1 }\right) \\&= \frac{1}{nh_1 }\sum _{i=1}^n K\left( \frac{\beta /\hat{\beta }-\beta _i /\hat{{\beta }}}{h_1 /\hat{{\beta }}}\right) \\&= \frac{1}{nh_1 }\sum _{i=1}^n K\left( \frac{e^{-\ln \left( \hat{{\beta }}/\beta \right) ^{\hat{{\alpha }}}/\hat{{\alpha }}}-e^{-\ln \left( \hat{{\beta }}/\beta _i \right) ^{\hat{{\alpha }}}/\hat{{\alpha }}}}{h_1 /\hat{{\beta }}}\right) \\&= \frac{1}{nh_1 }\sum _{i=1}^n K\left( \frac{e^{-w/\hat{{\alpha }}}-e^{-w/\hat{{\alpha }}}}{h_1 /\hat{{\beta }}}\right) =\frac{1}{nh_1 }\sum _{i=1}^n K\left( \frac{v-v_i }{h_1 /\hat{{\beta }}}\right) \\&= \frac{1}{\hat{{\beta }}nH_1 }\sum _{i=1}^n {K\left( \frac{v-v_i }{H_1 }\right) } =\hat{{g}}(v)/\hat{{\beta }}. \end{aligned}$$

Here \(Q=(\hat{{\beta }}/\beta )^{\hat{{\alpha }}}\) is pivotal, thus \(W=\ln Q\) and \(v=e^{-w/\hat{{\alpha }}}\) are pivotal quantities and \(H_1 =h_1 /\hat{{\beta }}\).

Similarly for the shape parameter, \(\alpha >0\), we can derive the kernel density estimator as:

$$\begin{aligned} \hat{{g}}(\alpha )&= \frac{1}{nh_2 }\sum _{i=1}^n K\left( \frac{\alpha -\alpha _i }{h_2 }\right) \\&= \frac{1}{n\hat{{\alpha }}h_2 /\hat{{\alpha }}}\sum _{i=1}^n {K\left( \frac{\alpha /\hat{{\alpha }}-\alpha _i /\hat{{\alpha }}}{h_2 /\hat{{\alpha }}}\right) }\\&= \frac{1}{n\hat{{\alpha }}H_2 }\sum _{i=1}^n {K\left( \frac{z-z_i }{H_2 }\right) } =\hat{{g}}(z)/\hat{{\alpha }}, \end{aligned}$$

where \(Z=\alpha /\hat{{\alpha }}\) and \(H_2 =h_2 /\hat{{\alpha }}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maswadah, M. Empirical Bayes inference for the Weibull model. Comput Stat 28, 2849–2859 (2013). https://doi.org/10.1007/s00180-013-0438-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0438-1

Keywords

Navigation