Skip to main content
Log in

Minimum \(K_{\phi }\)-divergence estimators for multinomial models and applications

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The properties of minimum \(K_{\phi }\)-divergence estimators for parametric multinomial populations are well-known when the assumed parametric model is true, namely, they are consistent and asymptotically normally distributed. Here we study these properties when the parametric model is not assumed to be correctly specified. Under certain conditions, these estimators are shown to converge to a well-defined limit and, suitably normalized, they are also asymptotically normal. Two applications of the results obtained are reported. First, two consistent bootstrap estimators of the null distribution of the test statistics in a certain class of goodness-of-fit tests are proposed and studied. Second, two methods for the model selection test problem based on \(K_{\phi }\)-divergence type statistics are proposed and studied. Both applications are illustrated with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Basu A, Sarkar S (1994) On disparity based goodness-of-fit tests for multinomial models. Stat Probab Lett 19:307–312

    Article  MATH  MathSciNet  Google Scholar 

  • Bouzebda S, Cherfi M (2012) General bootstrap for dual \(\phi \)-divergence estimates. J Probab Stat. doi: 10.1155/2012/834107

    MathSciNet  Google Scholar 

  • Broniatowski M, Keziou A (2006) Minimization of \(\phi \)-divergences on sets of signes measures. Studia Sci Math Hungar 43:403–442

    MATH  MathSciNet  Google Scholar 

  • Broniatowski M, Keziou A (2009) Parametric estimation and testing through divergences and the duality technique. J Multivar Anal 100:16–36

    Article  MATH  MathSciNet  Google Scholar 

  • Burbea J, Rao CR (1982) On the convexity of some divergence measures based on entropy functions. IEEE Trans Inform Theory 28:489–495

    Article  MATH  MathSciNet  Google Scholar 

  • Castaño-Martínez A, López-Blázquez F (2005) Distribution od a sum of weighted central chi-square variables. Comm Statist Theory Methods 34:515–524

    Article  MATH  MathSciNet  Google Scholar 

  • Csiszár I (1967) Information type measures of difference of probability distributions and indirect observations. Studia Sci Math Hungar 2:299–318

    MATH  MathSciNet  Google Scholar 

  • Csiszár I (1975) \(I\)-divegence geometry of probability distributions and minimization problems. Ann Probab 3:146–158

    Article  MATH  Google Scholar 

  • de la Horra J (2008) Bayesian model selection: measuring the \(\chi ^2\) discrepancy with the uniform distribution. Comm Stat Theory Methods 37:1412–1424

    Article  MATH  Google Scholar 

  • Dieudonne J (1969) Foundations of modern analysis. Academic Press, London

    MATH  Google Scholar 

  • Fujikoshi Y (1977) An asymptotic expansion for the distributions of the latent roots of the wishart matrix with multiple population roots. Ann Inst Stat Math 29:379–387

    Article  MATH  MathSciNet  Google Scholar 

  • Jiménez-Gamero MD, Pino-Mejías R, Alba-Fernández V, Moreno Rebollo JL (2011) Minimum \(\phi \)-divergence estimation in misspecified multinomial models. Comput Stat Data Anal 55:3365–3378

    Google Scholar 

  • Kotz S, Johnson NL, Boyd DW (1967) Series representations of quadratic forms in normal variables. I. Central case. Ann Math Stat 38:823–837

    Article  MATH  MathSciNet  Google Scholar 

  • Lindsay BG (1994) Efficiency versus robustness: the case for minimum Hellinger distance and related methods. Ann Stat 22:1081–1114

    Article  MATH  MathSciNet  Google Scholar 

  • Morales D, Pardo L, Vajda I (1995) Asymptotic divergence of estimates of discrete distributions. J Stat Plan Inference 48:347–369

    Article  MATH  MathSciNet  Google Scholar 

  • Pérez T, Pardo JA (2003a) Goodness-of-fit tests based on \(K_{\phi }\)-divergence. Kybernetika 39:739–752

    MATH  MathSciNet  Google Scholar 

  • Pérez T, Pardo JA (2003b) On choosing a goodness-of-fit test for discrete multivariate. Kybernetes 32:1405–1424

    Article  MATH  Google Scholar 

  • Pérez T, Pardo JA (2004) Minimun \(K_{\phi }\)-divergence estimator. Appl Math Lett 17:367–374

    Article  MATH  MathSciNet  Google Scholar 

  • Pérez T, Pardo JA (2006) The \(K_\phi \) divergence statistic for categorical data problems. Metrika 63:355–369

    Article  MATH  MathSciNet  Google Scholar 

  • Randles RH (1982) On the asymptotic normality of statistics with estimated parameters. Ann Stat 10: 462–474

    Article  MATH  MathSciNet  Google Scholar 

  • Rao JNK, Scott AJ (1981) The analysis of categorical data from complex sample surveys: chi-squared tests for goodness of fit and independence in two-way tables. J Am Stat Assoc 76:221–230

    Article  MATH  MathSciNet  Google Scholar 

  • Serfling R (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Shimodaira H (1998) An application of multiple comparison techniques to model selection. Ann Inst Stat Math 50:1–13

    Article  MATH  MathSciNet  Google Scholar 

  • Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:257–306

    Article  MathSciNet  Google Scholar 

  • Vuong QH, Wang W (1993) Minimum chi-square estimation and tests for model selection. J Econom 56:141–168

    Article  MATH  MathSciNet  Google Scholar 

  • White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1–25

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees for their constructive comments and suggestions which helped to improve the presentation. A. Rufián-Lizana is partially supported by Grant MTM2010-15383 (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Jiménez-Gamero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Gamero, M.D., Pino-Mejías, R. & Rufián-Lizana, A. Minimum \(K_{\phi }\)-divergence estimators for multinomial models and applications. Comput Stat 29, 363–401 (2014). https://doi.org/10.1007/s00180-013-0452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0452-3

Keywords