Skip to main content
Log in

Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In the context of semi-functional partial linear regression model, we study the problem of error density estimation. The unknown error density is approximated by a mixture of Gaussian densities with means being the individual residuals, and variance a constant parameter. This mixture error density has a form of a kernel density estimator of residuals, where the regression function, consisting of parametric and nonparametric components, is estimated by the ordinary least squares and functional Nadaraya–Watson estimators. The estimation accuracy of the ordinary least squares and functional Nadaraya–Watson estimators jointly depends on the same bandwidth parameter. A Bayesian approach is proposed to simultaneously estimate the bandwidths in the kernel-form error density and in the regression function. Under the kernel-form error density, we derive a kernel likelihood and posterior for the bandwidth parameters. For estimating the regression function and error density, a series of simulation studies show that the Bayesian approach yields better accuracy than the benchmark functional cross validation. Illustrated by a spectroscopy data set, we found that the Bayesian approach gives better point forecast accuracy of the regression function than the functional cross validation, and it is capable of producing prediction intervals nonparametrically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aneiros-Pérez G, Cao R, Vilar-Fernández JM, Muñoz-San-Roque A (2011) Functional prediction for the residual demand in electricity spot markets. In: Ferraty F (ed) Recent advances in functional data analysis and related topics. Physica-Verlag, Berlin

    Google Scholar 

  • Aneiros-Pérez G, Vieu P (2006) Semi-functional partial linear regression. Stat Probab Lett 76(11): 1102–1110

    Article  MATH  Google Scholar 

  • Aneiros-Pérez G, Vieu P (2008) Nonparametric time series prediction: a semi-functional partial linear modeling. J Multivar Anal 99(5):834–857

    Article  MATH  Google Scholar 

  • Aneiros-Pérez G, Vieu P (2011) Automatic estimation procedure in partial linear model with functional data. Stat Papers 52(4):751–771

    Article  MATH  Google Scholar 

  • Anglin PM, Gencay R (1996) Semiparametric estimation of a hedonic price function. J Appl Econom 11(6):633–648

    Article  Google Scholar 

  • Ansley CF, Wecker WE (1983) Extensions and examples of the signal extraction approach to regression. In: Zellner A (ed) Applied time series analysis of economic data. Bureau of the Census, Washington, pp 181–192

  • Barrientos-Marin J, Ferraty F, Vieu P (2010) Locally modelled regression and functional data. J Nonparametr Stat 22(5):617–632

    Article  MATH  MathSciNet  Google Scholar 

  • Benhenni K, Ferraty F, Rachdi M, Vieu P (2007) Local smoothing regression with functional data. Comput Stat 22(3):353–369

    Article  MathSciNet  Google Scholar 

  • Berlinet A, Elamine A, Mas A (2011) Local linear regression for functional data. Ann Inst Stat Math 63(5):1047–1075

    Article  MATH  MathSciNet  Google Scholar 

  • Boj E, Delicado P, Fortiana J (2010) Distance-based local linear regression for functional predictors. Comput Stat Data Anal 54(2):429–437

    Article  MATH  MathSciNet  Google Scholar 

  • Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71(2):353–360

    Article  MathSciNet  Google Scholar 

  • Burba F, Ferraty F, Vieu P (2009) \(k\)-nearest neighbour method in functional nonparametric regression. J Nonparametr Stat 21(4):453–469

    Google Scholar 

  • Engle R, Granger C, Rice J, Weiss A (1986) Semiparametric estimates of the relation between weather and electricity sales. J Am Stat Assoc 81(394):310–320

    Article  Google Scholar 

  • Eubank RL, Whitney P (1989) Convergence rates for estimation in certain partially linear models. J Stat Plan Inf 23(1):33–43

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F, Van Keilegom I, Vieu P (2010) On the validity of the bootstrap in non-parametric functional regression. Scand J Stat 37(2):286–306

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2002) The functional nonparametric model and application to spectrometric data. Comput Stat 17(4):545–564

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    Google Scholar 

  • Ferraty F, Vieu P (2009) Additive prediction and boosting for functional data. Comput Stat Data Anal 53(4):1400–1413

    Article  MATH  MathSciNet  Google Scholar 

  • Gabrys R, Horváth L, Kokoszka P (2010) Tests for error correlation in the functional linear model. J Am Stat Assoc 105(491):1113–1125

    Article  Google Scholar 

  • Garthwaite PH, Fan Y, Sisson SA (2010) Adaptive optimal scaling of Metropolis-Hastings algorithms using the Robbins-Monro process, Working paper, University of New South Wales. http://arxiv.org/pdf/1006.3690v1.pdf

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernardo JM, Berger J (eds) Bayesian statistics. Clarendon Press, Oxford, pp 169–193

    Google Scholar 

  • Geweke J (1999) Using simulation methods for Bayesian econometric models: inference, development, and communication. Econom Rev 18(1):1–73

    Article  MATH  MathSciNet  Google Scholar 

  • Geweke J (2010) Complete and incomplete econometric models. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Goutis C (1998) Second-derivative functional regression with applications to near infra-red spectroscopy. J R Stat Soc Ser B 60(1):103–114

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P (1987) On Kullback-Leibler loss and density estimation. Ann Stat 15(4):1491–1519

    Article  MATH  Google Scholar 

  • Härdle W, Liang H, Gao J (2000) Partially linear models. Physica-Verlag, New York

    Book  MATH  Google Scholar 

  • Heckman N (1986) Spline smoothing in a partly linear model. J R Stat Soc Ser B 48(2):244–248

    MATH  MathSciNet  Google Scholar 

  • Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Oper Res 31(6):1109–1144

    Article  MATH  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Jaki T, West RW (2008) Maximum kernel likelihood estimation. J Comput Graph Stat 17(4):976–993

    Article  MathSciNet  Google Scholar 

  • Jaki T, West W (2011) Symmetric maximum kernel likelihood estimation. J Stat Comput Simul 81(2): 193–206

    Article  MATH  MathSciNet  Google Scholar 

  • Kim S, Shephard N, Chib S (1998) Stochastic volatility: likelihood inference and comparison with arch models. Rev Econ Stud 65(3):361–393

    Article  MATH  Google Scholar 

  • Marron JS, Wand MP (1992) Exact mean integrated squared error. Ann Stat 20(2):712–736

    Article  MATH  MathSciNet  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Meyer R, Yu J (2000) BUGS for a Bayesian analysis of stochastic volatility models. Econom J 3(2):198–215

    Article  MATH  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) Coda: convergence diagnosis and output analysis for mcmc. R News 6(1):7–11

    Google Scholar 

  • R Core Team (2013) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rachdi M, Vieu P (2007) Nonparametric regression for functional data: automatic smoothing parameter selection. J Stat Plan Inf 137(9):2784–2801

    Article  MATH  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Rice J (1986) Convergence rates for partially splined models. Stat Probab Lett 4(4):203–208

    Article  MATH  MathSciNet  Google Scholar 

  • Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–407

    Article  MATH  MathSciNet  Google Scholar 

  • Robert CP, Casella G (2010) Introducing Monte Carlo methods with R. Springer, New York

    Book  MATH  Google Scholar 

  • Roberts GO, Rosenthal JS (2009) Examples of adaptive MCMC. J Comput Graph Stat 18(2):349–367

    Article  MathSciNet  Google Scholar 

  • Robinson P (1988) Root-N-consistent semiparametric regression. Econometrica 56(4):931–954

    Article  MATH  MathSciNet  Google Scholar 

  • Samb R (2011) Nonparametric estimation of the density of regression errors. C R Acad Sci Paris Ser I 349(23–24), 1281–1285

  • Schmalensee R, Stoker TM (1999) Household gasoline demand in the united states. Econometrica 67(3):645–662

    Article  Google Scholar 

  • Shang HL (2013a) Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density. Comput Stat Data Anal 67:185–198

    Article  Google Scholar 

  • Shang HL (2013b) Functional time series approach for forecasting very short-term electricity demand. J Appl Stat 40(1):152–168

    Article  MathSciNet  Google Scholar 

  • Speckman P (1988) Kernel smoothing in partial linear models. J R Stat Soc Ser B 50(3):413–436

    MATH  MathSciNet  Google Scholar 

  • Tse YK, Zhang X, Yu J (2004) Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method. Quant Financ 4(2):158–169

    Article  MathSciNet  Google Scholar 

  • Yao F, Müller H-G (2010) Functional quadratic regression. Biometrika 97(1):49–64

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang X, Brooks RD, King ML (2009) A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation. J Econom 153(1):21–32

    Article  MathSciNet  Google Scholar 

  • Zhang X, King ML (2011) Bayesian semiparametric GARCH models, Working paper, Monash University. http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2011/wp24-11.pdf

Download references

Acknowledgments

The author thanks Professors Rob Hyndman and Donald Poskitt for introducing him to functional data analysis, and Professors Xibin Zhang and Maxwell King for introducing him to Bayesian bandwidth estimation. The author would like to acknowledge Monash Sun Grid for its excellent parallel computing facility. Special thanks go to an associate editor and a referee for their insightful comments and suggestions, which led to a much improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Lin Shang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, H.L. Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density. Comput Stat 29, 829–848 (2014). https://doi.org/10.1007/s00180-013-0463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0463-0

Keywords

Navigation