Skip to main content
Log in

An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we consider the Conway–Maxwell Poisson (COM-Poisson) cure rate model based on a competing risks scenario. This model includes, as special cases, some of the well-known cure rate models discussed in the literature. By assuming the time-to-event to follow the generalized gamma distribution, which contains some of the commonly used lifetime distributions as special cases, we develop exact likelihood inference based on the expectation maximization algorithm. The standard errors of the maximum likelihood estimates are obtained by inverting the observed information matrix. An extensive Monte Carlo simulation study is performed to examine the method of inference developed here. Model discrimination within the generalized gamma family is also carried out by means of likelihood- and information-based methods to select the particular lifetime distribution that provides an adequate fit to the data. Finally, a data on cancer recurrence is analyzed to illustrate the flexibility of the COM-Poisson family and the generalized gamma family so as to select a parsimonious competing cause distribution and a lifetime distribution that jointly provide an adequate fit to the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal SK, Kalla SL (1996) A generalized gamma distribution and its application in reliability. Commun Stat Theory Methods 25:201–210

    Article  MATH  MathSciNet  Google Scholar 

  • Balakrishnan N, Chan PS (1995) Maximum likelihood estimation for the three-parameter log-gamma distribution under type-II censoring. In: Balakrishnan N (ed) Recent advances in life-testing and reliability. CRC Press, Boca Raton, FL, pp 439–453. (Chapter 23)

  • Balakrishnan N, Pal S (2013) Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family. Comput Stat Data Anal 67:41–67

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Pal S (2014) Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes. Stat Methods Med Res (to appear). doi:10.1177/0962280213491641

  • Balakrishnan N, Peng Y (2006) Generalized gamma frailty model. Stat Med 25:2797–2816

    Article  MathSciNet  Google Scholar 

  • Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47:501–515

  • Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B 11:15–53

    MATH  Google Scholar 

  • Borges P, Rodrigues J, Balakrishnan N (2012) Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data. Comput Stat Data Anal 56:1703–1713

    Article  MATH  MathSciNet  Google Scholar 

  • Cooner F, Banerjee S, Carlin BP, Sinha D (2007) Flexible cure rate modeling under latent activation schemes. J Am Stat Assoc 102:560–572

    Article  MATH  MathSciNet  Google Scholar 

  • Cox D, Oakes D (1984) Analysis of survival data. Chapman & Hall, London

    Google Scholar 

  • Chen M-H, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94:909–919

    Article  MATH  MathSciNet  Google Scholar 

  • Claeskens G, Nguti R, Janssen P (2008) One-sided tests in shared frailty models. Test 17:69–82

    Article  MATH  MathSciNet  Google Scholar 

  • Conway RW, Maxwell WL (1961) A queuing model with state dependent services rates. J Ind Eng XII:132–136

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    MATH  MathSciNet  Google Scholar 

  • Farewell VT (1982) The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38:1041–1046

    Article  Google Scholar 

  • Hoggart CJ, Griffin JE (2001) A Bayesian partition model for customer attrition. In: George EI (ed) Bayesian methods with applications to science, policy, and official statistics (Selected Papers from ISBA 2000). Proceedings of the sixth world meeting of the international society for Bayesian analysis, international society for Bayesian analysis, Creta, Greece, pp 61–70

  • Ibrahim JG, Chen M-H, Sinha D (2001) Bayesian survival analysis. Springer, New York

    Book  MATH  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, New York

  • Kadane JB, Shmueli G, Minka TP, Borle S, Boatwright P (2006) Conjugate analysis of the Conway–Maxwell–Poisson distribution. Bayesian Anal 1:363–374

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Khodabin M, Ahmadabadi A (2010) Some properties of generalized gamma distribution. Math Sci 4:9–28

    MATH  MathSciNet  Google Scholar 

  • Kirkwood JM, Ibrahim JG, Sondak VK, Richards J, Flaherty LE, Ernstoff MS, Smith TJ, Rao U, Steele M, Blum RH (2000) High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of Intergroup Trial E1690/S9111/C9190. J Clin Oncol 18:2444–2458

    Google Scholar 

  • Kuk AYC, Chen CH (1992) A mixture model combining logistic regression with proportional hazards regression. Biometrika 79:531–541

    Article  MATH  Google Scholar 

  • Lange K (1995) A gradient algorithm locally equivalent to the EM algorithm. J R Stat Soc Ser B 57:425–437

    MATH  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Wiley, Hoboken, NJ

    MATH  Google Scholar 

  • Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44:226–233

    MATH  MathSciNet  Google Scholar 

  • McLachlan GJ, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, Hoboken, NJ

    Book  MATH  Google Scholar 

  • Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    MATH  Google Scholar 

  • Peng Y, Dear KBG, Denham JW (1998) A generalized F mixture model for cure rate estimation. Stat Med 7:813–830

    Article  Google Scholar 

  • Prentice RL (1974) A log gamma model and its maximum likelihood estimation. Biometrika 61:539–544

    Article  MATH  MathSciNet  Google Scholar 

  • Rodrigues J, de Castro M, Balakrishnan N, Cancho VG (2011) Destructive weighted Poisson cure rate models. Lifetime Data Anal 17:333–346

    Article  MATH  MathSciNet  Google Scholar 

  • Rodrigues J, Cancho VG, de Castro M, Balakrishnan N (2012) A Bayesian destructive weighted Poisson cure rate model and an application to a cutaneous melanoma data. Stat Methods Med Res 21:585–597

    Article  MathSciNet  Google Scholar 

  • Rodrigues J, de Castro M, Cancho VG, Balakrishnan N (2009) COM-Poisson cure rate survival models and an application to a cutaneous melanoma data. J Stat Plan Inference 139:3605–3611

    Article  MATH  Google Scholar 

  • Self SG, Liang K-Y (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610

    Article  MATH  MathSciNet  Google Scholar 

  • Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P (2005) A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution. Appl Stat 54:127–142

    MATH  MathSciNet  Google Scholar 

  • Stacy EW (1962) A generalization of the gamma distribution. Ann Math Stat 33:1187–1192

    Article  MATH  MathSciNet  Google Scholar 

  • Sy JP, Taylor JMG (2000) Estimation in a Cox proportional hazards cure model. Biometrics 56:227–236

    Article  MATH  MathSciNet  Google Scholar 

  • Yakovlev AY, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications. World Scientific, Singapore

    MATH  Google Scholar 

  • Yamaguchi K (1992) Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of permanent employment in Japan. J Am Stat Assoc 87:284–292

    Google Scholar 

  • Yin G, Ibrahim JG (2005) Cure rate models: a unified approach. Can J Stat 33:559–570

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to the Natural Sciences and Engineering Research Council of Canada for funding this research. Our sincere thanks also go to two anonymous reviewers and the co-editor for their useful comments and suggestions on an earlier version of this manuscript which led to this improved version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Balakrishnan.

Appendices

Appendix 1: First- and second-order derivatives of the Q-function

Bernoulli cure rate model The expressions of the first- and second-order derivatives of the \(Q_1(\varvec{\beta },\varvec{\pi }^{(k)})\) function with respect to \(\varvec{\beta }\) are as follows:

$$\begin{aligned} \frac{\partial Q_1}{\partial \beta _l}&= \sum _{I_1}x_{il}+\sum _{I_0}\pi _i^{(k)}x_{il}-\sum _{I^*}x_{il}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })},\\ \frac{\partial ^2Q_1}{\partial \beta _l\partial \beta _{l^{\prime }}}&= -\sum _{I^*}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{\left( 1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })\right) ^2} \end{aligned}$$

for \(l,l^{\prime }=0,1,\ldots ,k\), and \(x_{i0}=1 \forall i=1,2,\ldots ,n\). The required first- and second-order derivatives of the \(Q_2(\varvec{\gamma }^*,\varvec{\pi }^{(k)})\) function with respect to \(\varvec{\gamma }^*\), for a fixed value of \(q\), are as follows:

$$\begin{aligned} \frac{\partial Q_2}{\partial \sigma }&= -\frac{n_1}{\sigma }\bigg \{1+\frac{\log \lambda }{q\sigma }\bigg \}+\frac{1}{q\sigma ^2}\sum _{I_1}\{(\lambda t_i)^{q/\sigma }\log (\lambda t_i)-\log t_i\}\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial Q_2}{\partial \lambda }&= \frac{n_1}{q\sigma \lambda }-\frac{1}{q\sigma \lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }+\sum _{I_0}\pi _i^{(k)}\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial ^2 Q_2}{\partial {\sigma }^2}&= \frac{n_1}{\sigma ^2}\bigg \{1+\frac{2\log \lambda }{q\sigma }\bigg \}+\frac{2}{q\sigma ^3}\sum _{I_1}\log t_i\\&\quad -\,\frac{1}{\sigma ^3}\sum _{I_1}(\lambda t_i)^{q/\sigma }\log (\lambda t_i)\bigg \{\frac{2}{q}+\frac{\log (\lambda t_i)}{\sigma }\bigg \}+\sum _{I_0}\pi _i^{(k)}\frac{\partial ^2}{\partial \sigma ^2}\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial ^2 Q_2}{\partial {\lambda }^2}&= -\frac{n_1}{q\sigma \lambda ^2}-\bigg (\frac{1}{\sigma }-\frac{1}{q}\bigg )\frac{1}{\sigma \lambda ^2}\sum _{I_1}(\lambda t_i)^{q/\sigma }+\sum _{I_0}\pi _i^{(k)}\frac{\partial ^2}{\partial \lambda ^2}\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial ^2 Q_2}{\partial {\sigma }\partial {\lambda }}&= -\frac{n_1}{q\sigma ^2\lambda }+\frac{1}{q\sigma ^2\lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }\bigg \{1+\frac{q}{\sigma }\log (\lambda t_i)\bigg \}\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\frac{\partial ^2}{\partial \sigma \partial \lambda }\log (S(t_i;\varvec{\gamma })), \end{aligned}$$

where \(\pi _i^{(k)}\) is as defined in (12).

Poisson cure rate model The required first- and second-order derivatives of the \(Q(\varvec{\theta }^*,\varvec{\pi }^{(k)})\) function with respect to \(\varvec{\beta }\) and \(\varvec{\gamma }^*\), for a fixed value of \(q\), are as follows:

$$\begin{aligned} \frac{\partial Q}{\partial \beta _l}&= \sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })S(t_i;\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}+\sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))}\\&\quad +\,\sum _{I_0}\pi _i^{(k)}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })S(t_i;\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}-\sum _{I^*}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })},\\ \frac{\partial Q}{\partial \sigma }&= -\frac{n_1}{\sigma }\bigg \{1+\frac{\log \lambda }{q\sigma }\bigg \}+\frac{1}{q\sigma ^2}\sum _{I_1}\{(\lambda t_i)^{q/\sigma }\log (\lambda t_i)-\log t_i\}\\&\quad +\,\sum _{I_1}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma }),\\ \frac{\partial Q}{\partial \lambda }&= \frac{n_1}{q\sigma \lambda }-\frac{1}{q\sigma \lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }+\sum _{I_1}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma }),\\ \frac{\partial ^2Q}{\partial \beta _l\partial \beta _{l^{\prime }}}&= \sum _{I_1}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2}\bigg \{\frac{\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))-\exp (\varvec{x}_i^{'}\varvec{\beta })}{(\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta })))^2}\\&\quad +\,S(t_i;\varvec{\gamma })\bigg \}+\sum _{I_0}\pi _i^{(k)}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })S(t_i;\varvec{\gamma })P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2}\\&\quad \bigg \{1\!-\!\exp (\varvec{x}_i^{'}\varvec{\beta })S(t_i;\varvec{\gamma })(P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\!-\!1)\bigg \}\!-\!\sum _{I^*}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1\!+\!\exp (\varvec{x}_i^{'}\varvec{\beta }))^2},\\ \frac{\partial ^2Q}{\partial \beta _l\partial \sigma }&= \sum _{I_1}x_{il}\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \}\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma }) +\sum _{I_0}\pi _i^{(k)}x_{il}\\&\quad \times \,\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \}\bigg \{1-A(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })-1)\bigg \}\\&\quad \times \,\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma }),\\ \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2Q}{\partial \beta _l\partial \lambda }&= \sum _{I_1}x_{il}\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma }) +\sum _{I_0}\pi _i^{(k)}x_{il}\\&\quad \times \,\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \}\bigg \{1-A(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })-1)\bigg \}\\&\quad \times \,\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma }),\\ \frac{\partial ^2 Q}{\partial {\sigma }^2}&= \frac{n_1}{\sigma ^2}\bigg \{1+\frac{2\log \lambda }{q\sigma }\bigg \}+\frac{2}{q\sigma ^3}\sum _{I_1}\log t_i-\frac{1}{\sigma ^3}\sum _{I_1}(\lambda t_i)^{q/\sigma }\log (\lambda t_i)\\&\quad \times \,\bigg \{\frac{2}{q}+\frac{\log (\lambda t_i)}{\sigma }\bigg \} +\sum _{I_1}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial ^2}{\partial \sigma ^2}S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\bigg [P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma ^2}S(t_i;\varvec{\gamma })\\&\quad +\,\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \sigma }P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ],\\ \frac{\partial ^2 Q}{\partial {\lambda }^2}&= -\frac{n_1}{q\sigma \lambda ^2}-\bigg (\frac{1}{\sigma }-\frac{1}{q}\bigg )\frac{1}{\sigma \lambda ^2}\sum _{I_1}(\lambda t_i)^{q/\sigma }\\&\quad +\,\sum _{I_1}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial ^2}{\partial \lambda ^2}S(t_i;\varvec{\gamma }) +\sum _{I_0}\pi _i^{(k)}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\\&\quad \times \,\bigg [P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \lambda ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \lambda }P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ],\\ \frac{\partial ^2Q}{\partial \sigma \partial \lambda }&= -\frac{n_1}{q\sigma ^2\lambda }+\frac{1}{q\sigma ^2\lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }\bigg \{1+\frac{q}{\sigma }\log (\lambda t_i)\bigg \}\\&\quad +\,\sum _{I_1}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial ^2}{\partial \sigma \partial \lambda }S(t_i;\varvec{\gamma }) +\sum _{I_0}\pi _i^{(k)}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\\&\quad \times \,\bigg [P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma \partial \lambda }S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \lambda }P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ] \end{aligned}$$

for \(l,l^{\prime }=0,1,\ldots ,k\), and \(x_{i0}=1 \forall i=1,2,\ldots ,n,\) where

$$\begin{aligned} P(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })=\frac{\exp (A(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma }))}{\exp (A(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma }))-1} \end{aligned}$$

for \(i\in I_0,\) and \(A(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\) and \(\pi _i^{(k)}\) are as defined in (13) and (14), respectively.

Geometric cure rate model The required first- and second-order derivatives of the \(Q(\varvec{\theta }^*,\varvec{\pi }^{(k)})\) function with respect to \(\varvec{\beta }\) and \(\varvec{\gamma }^*\), for a fixed value of \(q\), are as follows:

$$\begin{aligned} \frac{\partial Q}{\partial \beta _l}&= \sum _{I_1}x_{il}\{1-2B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(1-S(t_i;\varvec{\gamma }))\}-\sum _{I_0}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\\&\quad +\,\sum _{I_0}\pi _i^{(k)}x_{il}\{1-B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(1-S(t_i;\varvec{\gamma }))\},\\ \frac{\partial Q}{\partial \sigma }&= -\frac{n_1}{\sigma }\bigg \{1+\frac{\log \lambda }{q\sigma }\bigg \}+\frac{1}{q\sigma ^2}\sum _{I_1}\{(\lambda t_i)^{q/\sigma }\log (\lambda t_i)-\log t_i\}\\&\quad +\,2\sum _{I_1}B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\bigg [\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))+B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\bigg ],\\ \frac{\partial Q}{\partial \lambda }&= \frac{n_1}{q\sigma \lambda }-\frac{1}{q\sigma \lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }+2\sum _{I_1}B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\bigg [\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))+B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\bigg ],\\ \frac{\partial ^2Q}{\partial \beta _l\partial \beta _{l^{\prime }}}&= -2\sum _{I_1}x_{il}x_{il^{\prime }}\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(1-S(t_i;\varvec{\gamma }))}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}\\&\quad -\,\sum _{I_0}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2}\\&\quad -\,\sum _{I_0}\pi _i^{(k)}x_{il}x_{il^{\prime }}\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(1-S(t_i;\varvec{\gamma }))}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))},\\ \frac{\partial ^2Q}{\partial \beta _l\partial \sigma }&= 2\sum _{I_1}x_{il}\bigg \{\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}\bigg \}\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}\pi _i^{(k)}x_{il}\bigg \{\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}\bigg \}\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma }),\\ \frac{\partial ^2Q}{\partial \beta _l\partial \lambda }&= 2\sum _{I_1}x_{il}\bigg \{\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}\pi _i^{(k)}x_{il}\bigg \{\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma }),\\ \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 Q}{\partial {\sigma }^2}&= \frac{n_1}{\sigma ^2}\bigg \{1+\frac{2\log \lambda }{q\sigma }\bigg \}+\frac{2}{q\sigma ^3}\sum _{I_1}\log t_i\\&\quad -\,\frac{1}{\sigma ^3}\sum _{I_1}(\lambda t_i)^{q/\sigma }\log (\lambda t_i)\bigg \{\frac{2}{q}+\frac{\log (\lambda t_i)}{\sigma }\bigg \}\\&\quad +\,2\sum _{I_1}\bigg [B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \sigma }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ]\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\bigg [B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \sigma }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ]\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\frac{\partial ^2}{\partial \sigma ^2}\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial ^2 Q}{\partial {\lambda }^2}&= -\frac{n_1}{q\sigma \lambda ^2}-\bigg (\frac{1}{\sigma }-\frac{1}{q}\bigg )\frac{1}{\sigma \lambda ^2}\sum _{I_1}(\lambda t_i)^{q/\sigma }\\&\quad +\,2\sum _{I_1}\bigg [B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \lambda ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \lambda }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ]\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\bigg [B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \lambda ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \lambda }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ]\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\frac{\partial ^2}{\partial \lambda ^2}\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial ^2Q}{\partial \sigma \partial \lambda }&= -\frac{n_1}{q\sigma ^2\lambda }+\frac{1}{q\sigma ^2\lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }\bigg \{1+\frac{q}{\sigma }\log (\lambda t_i)\bigg \}\\&\quad +\,2\sum _{I_1}\bigg [B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma \partial \lambda }S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \lambda }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ]\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\bigg [B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma \partial \lambda }S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \lambda }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg ]\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\frac{\partial ^2}{\partial \sigma \partial \lambda }\log (S(t_i;\varvec{\gamma })) \end{aligned}$$

for \(l,l^{\prime }=0,1,\ldots ,k\), and \(x_{i0}=1 \forall i=1,2,\ldots ,n,\) where

$$\begin{aligned} B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })=\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))} \end{aligned}$$
(17)

for \(i=1,2,\ldots ,n,\) and \(\pi _i^{(k)}\) is as defined in (15).

COM-Poisson cure rate model The required first- and second-order derivatives of the \(Q(\varvec{\theta }^*,\varvec{\pi }^{(k)})\) function with respect to \(\varvec{\beta }\) and \(\varvec{\gamma }^*\), for fixed values of \(q\) and \(\phi \), are as follows:

$$\begin{aligned} \frac{\partial Q}{\partial \beta _l}&= \sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })z_{21i}}{z_{2i}z_{01i}} +\sum _{I_0}\pi _i^{(k)}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })z_{2i}}{z_{1i}z_{01i}}-\sum _{I^*}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })},\\ \frac{\partial Q}{\partial \sigma }&= -\frac{n_1}{\sigma }\bigg \{1+\frac{\log \lambda }{q\sigma }\bigg \}+\frac{1}{q\sigma ^2}\sum _{I_1}\{(\lambda t_i)^{q/\sigma }\log (\lambda t_i)-\log t_i\}\\&\quad +\,\sum _{I_1}\bigg (\frac{z_{21i}}{z_{2i}}-1\bigg )\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))+\sum _{I_0}\pi _i^{(k)}\frac{z_{2i}}{z_{1i}}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial Q}{\partial \lambda }&= \frac{n_1}{q\sigma \lambda }-\frac{1}{q\sigma \lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }+\sum _{I_1}\bigg (\frac{z_{21i}}{z_{2i}}-1\bigg )\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\frac{z_{2i}}{z_{1i}}\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial ^2Q}{\partial \beta _l\partial \beta _{l^{\prime }}}&= \sum _{I_1}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(z_{2i}z_{01i})^2}\bigg [\exp (\varvec{x}_i^{'}\varvec{\beta })\bigg \{z_{2i}z_{22i}-z_{21i}^2\bigg \}+z_{2i}z_{21i}\bigg \{z_{01i}\\&\quad -\,\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })z_{02i}}{z_{01i}}\bigg \}\bigg ]+\sum _{I_0}\pi _i^{(k)}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(z_{1i}z_{01i})^2}\bigg [\exp (\varvec{x}_i^{'}\varvec{\beta })\bigg \{z_{1i}z_{21i}-z_{2i}^2\bigg \}\\&\quad +\,z_{1i}z_{2i}\bigg \{z_{01i}-\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })z_{02i}}{z_{01i}}\bigg \}\bigg ]-\sum _{I^*}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2},\\ \frac{\partial ^2Q}{\partial \beta _l\partial \sigma }&= \sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{z_{01i}}\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\sum _{I_0}\pi _i^{(k)}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{z_{01i}}\bigg \{\frac{z_{1i}z_{21i}-z_{2i}^2}{z_{1i}^2}\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial ^2Q}{\partial \beta _l\partial \lambda }&= \sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{z_{01i}}\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\sum _{I_0}\pi _i^{(k)}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{z_{01i}}\bigg \{\frac{z_{1i}z_{21i}-z_{2i}^2}{z_{1i}^2}\bigg \}\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma })),\\ \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 Q}{\partial {\sigma }^2}&= \frac{n_1}{\sigma ^2}\bigg \{1+\frac{2\log \lambda }{q\sigma }\bigg \}+\frac{2}{q\sigma ^3}\sum _{I_1}\log t_i-\frac{1}{\sigma ^3}\sum _{I_1}(\lambda t_i)^{q/\sigma }\log (\lambda t_i)\\&\quad \times \,\bigg \{\frac{2}{q}+\frac{\log (\lambda t_i)}{\sigma }\bigg \} +\sum _{I_1}\bigg [\bigg (\frac{z_{21i}}{z_{2i}}-1\bigg )\frac{\partial ^2}{\partial \sigma ^2}\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\bigg \{\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\bigg \}^2\bigg ]\\&\quad +\,\sum _{I_0}\pi _i^{(k)}\bigg [\frac{z_{2i}}{z_{1i}}\frac{\partial ^2}{\partial \sigma ^2}\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{1i}z_{21i}-z_{2i}^2}{z_{1i}^2}\bigg \}\bigg \{\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\bigg \}^2\bigg ],\\ \frac{\partial ^2 Q}{\partial {\lambda }^2}&= -\frac{n_1}{q\sigma \lambda ^2}-\bigg (\frac{1}{\sigma }-\frac{1}{q}\bigg )\frac{1}{\sigma \lambda ^2}\sum _{I_1}(\lambda t_i)^{q/\sigma }\\&\quad +\,\sum _{I_1}\bigg [\bigg (\frac{z_{21i}}{z_{2i}}-1\bigg )\frac{\partial ^2}{\partial \lambda ^2}\log (S(t_i;\varvec{\gamma }))+\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\\&\quad \times \,\bigg \{\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\bigg \}^2\bigg ] +\sum _{I_0}\pi _i^{(k)}\bigg [\frac{z_{2i}}{z_{1i}}\frac{\partial ^2}{\partial \lambda ^2}\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{1i}z_{21i}-z_{2i}^2}{z_{1i}^2}\bigg \}\bigg \{\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\bigg \}^2\bigg ],\\ \frac{\partial ^2Q}{\partial \sigma \partial \lambda }&= -\frac{n_1}{q\sigma ^2\lambda }+\frac{1}{q\sigma ^2\lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }\bigg \{1+\frac{q}{\sigma }\log (\lambda t_i)\bigg \}\\&\quad +\,\sum _{I_1}\bigg [\bigg (\frac{z_{21i}}{z_{2i}}-1\bigg )\frac{\partial ^2}{\partial \sigma \partial \lambda }\log (S(t_i;\varvec{\gamma }))+\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\\&\quad \times \,\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\bigg ] +\sum _{I_0}\pi _i^{(k)}\bigg [\frac{z_{2i}}{z_{1i}}\frac{\partial ^2}{\partial \sigma \partial \lambda }\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{1i}z_{21i}-z_{2i}^2}{z_{1i}^2}\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\bigg ] \end{aligned}$$

for \(l,l^{\prime }=0,1,\ldots ,k\), and \(x_{i0}=1 \forall i=1,2,\ldots ,n,\) where

$$\begin{aligned} z_{21}&= z_{21}(\varvec{\theta };\varvec{x},t)=\sum _{j=1}^{\infty }\frac{j^2\{H_{\phi }^{-1}(1+\exp (\varvec{x}^{'}\varvec{\beta }))S(t;\varvec{\gamma })\}^j}{(j!)^{\phi }},\\ z_{22}&= z_{22}(\varvec{\theta };\varvec{x},t)=\sum _{j=1}^{\infty }\frac{j^3\{H_{\phi }^{-1}(1+\exp (\varvec{x}^{'}\varvec{\beta }))S(t;\varvec{\gamma })\}^j}{(j!)^{\phi }},\\ z_{01}&= z_{01}(\varvec{\theta }_1;\varvec{x})=\sum _{j=1}^{\infty }\frac{j\{H_{\phi }^{-1}(1+\exp (\varvec{x}^{'}\varvec{\beta }))\}^j}{(j!)^{\phi }},\\ z_{02}&= z_{02}(\varvec{\theta }_1;\varvec{x})=\sum _{j=1}^{\infty }\frac{j^2\{H_{\phi }^{-1}(1+\exp (\varvec{x}^{'}\varvec{\beta }))\}^j}{(j!)^{\phi }} \end{aligned}$$

and \(\pi _i^{(k)}\) is as defined in (16).

The quantities \(z_{1i}, z_{2i}, z_{21i}, z_{22i}, z_{01i}\), and \(z_{02i}\) are all computed by truncating the numerical series for each \(i\). Let \(S_n\) denote the \(n\)-th order partial sum of the infinite series. Then, the infinite series can be approximated with the first \(n\) terms of the series if \(S_{n+1}-S_n \le \epsilon \), where \(\epsilon \) is a pre-fixed small tolerance value. In our study, we chose \(\epsilon =0.01\) for computational ease and efficiency.

Appendix 2: Observed information matrix

Bernoulli cure rate model The components of the score function, for a fixed value of \(q\), are

$$\begin{aligned} \frac{\partial l}{\partial \beta _l}&= \sum _{I_1}x_{il}+\sum _{I_0}x_{il}w_i-\sum _{I^*}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })},\\ \frac{\partial l}{\partial \sigma }&= -\frac{n_1}{\sigma }\bigg \{1+\frac{\log \lambda }{q\sigma }\bigg \}+\frac{1}{q\sigma ^2}\sum _{I_1}\{(\lambda t_i)^{q/\sigma }\log (\lambda t_i)-\log t_i\}\\&\quad +\,\sum _{I_0}w_i\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial l}{\partial \lambda }&= \frac{n_1}{q\sigma \lambda }-\frac{1}{q\sigma \lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }+\sum _{I_0}w_i\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma })). \end{aligned}$$

The observed information matrix has its components as

$$\begin{aligned} -\frac{\partial ^2l}{\partial \beta _l\partial \beta _{l^{'}}}&= -\sum _{I_0}x_{il}x_{il^{'}}w_i(1-w_i)+\sum _{I^*}x_{il}x_{il^{'}}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2},\\ -\frac{\partial ^2l}{\partial \beta _l\partial \sigma }&= -\sum _{I_0}x_{il}\frac{\partial }{\partial \sigma }w_i,\\ -\frac{\partial ^2l}{\partial \beta _l\partial \lambda }&= -\sum _{I_0}x_{il}\frac{\partial }{\partial \lambda }w_i,\\ -\frac{\partial ^2l}{\partial \sigma ^2}&= -\frac{n_1}{\sigma ^2}\bigg \{1+\frac{2\log \lambda }{q\sigma }\bigg \}-\frac{2}{q\sigma ^3}\sum _{I_1}\log t_i\\&\quad +\,\frac{1}{\sigma ^3}\sum _{I_1}(\lambda t_i)^{q/\sigma }\log (\lambda t_i)\bigg \{\frac{2}{q}+\frac{\log (\lambda t_i)}{\sigma }\bigg \}\\&\quad -\,\sum _{I_0}\bigg \{w_i\frac{\partial ^2}{\partial \sigma ^2}\log (S(t_i;\varvec{\gamma }))+\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\frac{\partial }{\partial \sigma }w_i\bigg \},\\ -\frac{\partial ^2l}{\partial \lambda ^2}&= \frac{n_1}{q\sigma \lambda ^2}+\bigg (\frac{1}{\sigma }-\frac{1}{q}\bigg )\frac{1}{\sigma \lambda ^2}\sum _{I_1}(\lambda t_i)^{q/\sigma }\\&\quad -\,\sum _{I_0}\bigg \{w_i\frac{\partial ^2}{\partial \lambda ^2}\log (S(t_i;\varvec{\gamma }))+\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\frac{\partial }{\partial \lambda }w_i\bigg \},\\ -\frac{\partial ^2l}{\partial \sigma \partial \lambda }&= \frac{n_1}{q\sigma ^2\lambda }-\frac{1}{q\sigma ^2\lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }\bigg \{1+\frac{q}{\sigma }\log (\lambda t_i)\bigg \}\\&\quad -\,\sum _{I_0}\bigg \{w_i\frac{\partial ^2}{\partial \sigma \partial \lambda }\log (S(t_i;\varvec{\gamma }))+\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\frac{\partial }{\partial \lambda }w_i\bigg \}. \end{aligned}$$

The above are defined for \(l,l^{\prime }=0,1,\ldots ,k,\,x_{i0}=1 \forall i=1,2,\ldots ,n\), where

$$\begin{aligned} w_i=\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })S(t_i;\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })S(t_i;\varvec{\beta })} \end{aligned}$$

for \(i\in I_0\).

Poisson cure rate model The components of the score function, for a fixed value of \(q\), are

$$\begin{aligned} \frac{\partial l}{\partial \beta _l}&= \sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))}+\sum _{I^*}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })\{S(t_i;\varvec{\gamma })-1\}}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })},\\ \frac{\partial l}{\partial \sigma }&= -\frac{n_1}{\sigma }\bigg \{1+\frac{\log \lambda }{q\sigma }\bigg \}+\frac{1}{q\sigma ^2}\sum _{I_1}\{(\lambda t_i)^{q/\sigma }\log (\lambda t_i)-\log t_i\}\\&\quad +\,\sum _{I^*}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma }),\\ \frac{\partial l}{\partial \lambda }&= \frac{n_1}{q\sigma \lambda }-\frac{1}{q\sigma \lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }+\sum _{I^*}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma }). \end{aligned}$$

The observed information matrix has its components as

$$\begin{aligned} -\frac{\partial ^2l}{\partial \beta _l\partial \beta _{l^{'}}}&= -\sum _{I_1}x_{il}x_{il^{'}}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2}\bigg \{\frac{\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))-\exp (\varvec{x}_i^{'}\varvec{\beta })}{(\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta })))^2}\bigg \}\\&\quad -\,\sum _{I^*}x_{il}x_{il^{'}}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })\{S(t_i;\varvec{\gamma })-1\}}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2},\\ -\frac{\partial ^2l}{\partial \beta _l\partial \sigma }&= -\sum _{I^*}x_{il}\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \}\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma }),\\ -\frac{\partial ^2l}{\partial \beta _l\partial \lambda }&= -\sum _{I^*}x_{il}\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma }),\\ -\frac{\partial ^2 l}{\partial {\sigma }^2}&= -\frac{n_1}{\sigma ^2}\bigg \{1+\frac{2\log \lambda }{q\sigma }\bigg \}-\frac{2}{q\sigma ^3}\sum _{I_1}\log t_i\\&\quad +\,\frac{1}{\sigma ^3}\sum _{I_1}(\lambda t_i)^{q/\sigma }\log (\lambda t_i)\bigg \{\frac{2}{q}+\frac{\log (\lambda t_i)}{\sigma }\bigg \}\\&\quad -\,\sum _{I^*}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial ^2}{\partial \sigma ^2}S(t_i;\varvec{\gamma }),\\ -\frac{\partial ^2 l}{\partial {\lambda }^2}&= \frac{n_1}{q\sigma \lambda ^2}+\bigg (\frac{1}{\sigma }-\frac{1}{q}\bigg )\frac{1}{\sigma \lambda ^2}\sum _{I_1}(\lambda t_i)^{q/\sigma }\\&\quad -\,\sum _{I^*}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial ^2}{\partial \lambda ^2}S(t_i;\varvec{\gamma }),\\ -\frac{\partial ^2l}{\partial \sigma \partial \lambda }&= \frac{n_1}{q\sigma ^2\lambda }-\frac{1}{q\sigma ^2\lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }\bigg \{1+\frac{q}{\sigma }\log (\lambda t_i)\bigg \}\\&\quad -\,\sum _{I^*}\log (1+\exp (\varvec{x}_i^{'}\varvec{\beta }))\frac{\partial ^2}{\partial \sigma \partial \lambda }S(t_i;\varvec{\gamma }). \end{aligned}$$

The above are defined for \(l,l^{\prime }=0,1,\ldots ,k,\,x_{i0}=1 \forall i=1,2,\ldots ,n\).

Geometric cure rate model The components of the score function, for a fixed value of \(q\), are as follows

$$\begin{aligned} \frac{\partial l}{\partial \beta _l}&= \sum _{I_1}x_{il}\{1-2B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(1-S(t_i;\varvec{\gamma }))\}-\sum _{I_0}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\\&\quad +\,\sum _{I_0}x_{il}w_i\{1-B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(1-S(t_i;\varvec{\gamma }))\},\\ \frac{\partial l}{\partial \sigma }&= -\frac{n_1}{\sigma }\bigg \{1+\frac{\log \lambda }{q\sigma }\bigg \}+\frac{1}{q\sigma ^2}\sum _{I_1}\{(\lambda t_i)^{q/\sigma }\log (\lambda t_i)-\log t_i\}\\&\quad +\,2\sum _{I_1}B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma }) +\sum _{I_0}\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \}\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}w_iB(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma }),\\ \frac{\partial l}{\partial \lambda }&= \frac{n_1}{q\sigma \lambda }-\frac{1}{q\sigma \lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }+2\sum _{I_1}B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\\&\quad +\,\sum _{I_0}\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma }) +\sum _{I_0}w_iB(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma }). \end{aligned}$$

The observed information matrix has its components as

$$\begin{aligned} -\frac{\partial ^2l}{\partial \beta _l\partial \beta _{l^{\prime }}}&= 2\sum _{I_1}x_{il}x_{il^{\prime }}\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(1-S(t_i;\varvec{\gamma }))}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}\\&\quad +\,\sum _{I_0}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2}\\&\quad +\,\sum _{I_0}x_{il}x_{il^{\prime }}w_iB(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })(1-S(t_i;\varvec{\gamma }))\\&\quad \times \,\bigg \{\frac{1}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}+\frac{1}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \},\\ -\frac{\partial ^2l}{\partial \beta _l\partial \sigma }&= -2\sum _{I_1}x_{il}\bigg \{\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}\bigg \}\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\\&\quad -\,\sum _{I_0}x_{il}\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2}\bigg \}\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\\&\quad -\,\sum _{I_0}x_{il}w_iB(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\\&\quad \times \,\bigg \{\frac{1}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}+\frac{1}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \},\\ -\frac{\partial ^2l}{\partial \beta _l\partial \lambda }&= -2\sum _{I_1}x_{il}\bigg \{\frac{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\\&\quad -\,\sum _{I_0}x_{il}\bigg \{\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{(1+\exp (\varvec{x}_i^{'}\varvec{\beta }))^2}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\\&\quad -\,\sum _{I_0}x_{il}w_iB(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\\&\quad \times \,\bigg \{\frac{1}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })(1-S(t_i;\varvec{\gamma }))}+\frac{1}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })}\bigg \},\\ -\frac{\partial ^2 l}{\partial {\sigma }^2}&= -\frac{n_1}{\sigma ^2}\bigg \{1+\frac{2\log \lambda }{q\sigma }\bigg \}-\frac{2}{q\sigma ^3}\sum _{I_1}\log t_i\\&\quad +\,\frac{1}{\sigma ^3}\sum _{I_1}(\lambda t_i)^{q/\sigma }\log (\lambda t_i)\bigg \{\frac{2}{q}+\frac{\log (\lambda t_i)}{\sigma }\bigg \}\\&\quad -\,2\sum _{I_1}\bigg \{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \sigma }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg \}\\&\quad -\,\sum _{I_0}\bigg \{\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })}\bigg \}\frac{\partial ^2}{\partial \sigma ^2}S(t_i;\varvec{\gamma })\\&\quad -\,\sum _{I_0}\bigg [w_iB(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\\&\quad \times \,\bigg \{w_i\frac{\partial }{\partial \sigma }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })+\bigg \{\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })}\bigg \}\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\bigg \}\bigg ],\\ \end{aligned}$$
$$\begin{aligned} -\frac{\partial ^2 l}{\partial {\lambda }^2}&= \frac{n_1}{q\sigma \lambda ^2}+\bigg (\frac{1}{\sigma }-\frac{1}{q}\bigg )\frac{1}{\sigma \lambda ^2}\sum _{I_1}(\lambda t_i)^{q/\sigma }\\&\quad -\,2\sum _{I_1}\bigg \{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \lambda ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \lambda }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg \}\\&\quad -\,\sum _{I_0}\bigg \{\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })}\bigg \}\frac{\partial ^2}{\partial \lambda ^2}S(t_i;\varvec{\gamma })\\&\quad -\,\sum _{I_0}\bigg [w_iB(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \lambda ^2}S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\bigg \{w_i\frac{\partial }{\partial \lambda }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\\&\quad +\,\bigg \{\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\bigg \}\bigg ],\\ \end{aligned}$$
$$\begin{aligned} -\frac{\partial ^2l}{\partial \sigma \partial \lambda }&= \frac{n_1}{q\sigma ^2\lambda }-\frac{1}{q\sigma ^2\lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }\bigg \{1+\frac{q}{\sigma }\log (\lambda t_i)\bigg \}\\&\quad -\,2\sum _{I_1}\bigg \{B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\frac{\partial ^2}{\partial \sigma \partial \lambda }S(t_i;\varvec{\gamma })+\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\frac{\partial }{\partial \lambda }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\bigg \}\\&\quad -\,\sum _{I_0}\bigg \{\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })}\bigg \}\frac{\partial ^2}{\partial \sigma \partial \lambda }S(t_i;\varvec{\gamma })\\&\quad \!-\!\sum _{I_0}\bigg [\!w_iB(t_i,\varvec{x}_i;\varvec{\beta },\!\varvec{\gamma })\frac{\partial ^2}{\partial \sigma \partial \lambda }S(t_i;\varvec{\gamma })\!+\!\frac{\partial }{\partial \sigma }S(t_i;\varvec{\gamma })\bigg \{\!w_i\frac{\partial }{\partial \lambda }B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\\&\quad +\,\bigg \{\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })}{1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })}\bigg \}\frac{\partial }{\partial \lambda }S(t_i;\varvec{\gamma })\bigg \}\bigg ]. \end{aligned}$$

The above are defined for \(l,l^{\prime }=0,1,\ldots ,k,\,x_{i0}=1 \forall i=1,2,\ldots ,n\), where

$$\begin{aligned} w_i=\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })S(t_i;\varvec{\gamma })}{1+\exp (\varvec{x}_i^{\prime }\varvec{\beta })} \end{aligned}$$

for \(i\in I_0,\) and \(B(t_i,\varvec{x}_i;\varvec{\beta },\varvec{\gamma })\) is as defined in (17).

COM-Poisson cure rate model The components of the score function, for a fixed value of \(q\) and \(\phi \), are

$$\begin{aligned} \frac{\partial l}{\partial \beta _l}&= \sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })z_{21i}}{z_{2i}z_{01i}} +\sum _{I_0}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })z_{2i}}{(1+z_{1i})z_{01i}}-\sum _{I^*}x_{il}\frac{\exp (\varvec{x}_i^{'}\varvec{\beta })}{1+\exp (\varvec{x}_i^{'}\varvec{\beta })},\\ \frac{\partial l}{\partial \sigma }&= -\frac{n_1}{\sigma }\bigg \{1+\frac{\log \lambda }{q\sigma }\bigg \}+\frac{1}{q\sigma ^2}\sum _{I_1}\{(\lambda t_i)^{q/\sigma }\log (\lambda t_i)-\log t_i\}\\&\quad +\,\sum _{I_1}\bigg \{\frac{z_{21i}}{z_{2i}}-1\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))+\sum _{I_0}\bigg \{\frac{z_{2i}}{1+z_{1i}}\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma })),\\ \frac{\partial l}{\partial \lambda }&= \frac{n_1}{q\sigma \lambda }-\frac{1}{q\sigma \lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }+\sum _{I_1}\bigg \{\frac{z_{21i}}{z_{2i}}-1\bigg \}\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\sum _{I_0}\bigg \{\frac{z_{2i}}{1+z_{1i}}\bigg \}\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma })). \end{aligned}$$

The observed information matrix has its components as

$$\begin{aligned} -\frac{\partial ^2l}{\partial \beta _l\partial \beta _{l^{\prime }}}&= -\sum _{I_1}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{(z_{01i}z_{2i})^2}\bigg [\exp (\varvec{x}_i^{\prime }\varvec{\beta })\bigg \{z_{2i}z_{22i}-z_{21i}^2\bigg \}\\&\quad +\,z_{2i}z_{21i}\bigg \{z_{01i}-\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })z_{02i}}{z_{01i}}\bigg \}\bigg ] -\sum _{I_0}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{(z_{01i}(1+z_{1i}))^2}\\&\quad \times \,\bigg [\exp (\varvec{x}_i^{\prime }\varvec{\beta })\bigg \{z_{21i}(1+z_{1i})-z_{2i}^2\bigg \}+z_{2i}(1+z_{1i})\bigg \{z_{01i}\\&-\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })z_{02i}}{z_{01i}}\bigg \}\bigg ] +\sum _{I^*}x_{il}x_{il^{\prime }}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{(1+\exp (\varvec{x}_i^{\prime }\varvec{\beta }))^2}, \end{aligned}$$
$$\begin{aligned} -\frac{\partial ^2l}{\partial \beta _l\partial \sigma }&= -\sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{z_{01i}}\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\\&\quad -\,\sum _{I_0}x_{il}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{z_{01i}}\bigg \{\frac{z_{21i}(1+z_{1i})-z_{2i}^2}{(1+z_{1i})^2}\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma })),\\ -\frac{\partial ^2l}{\partial \beta _l\partial \lambda }&= -\sum _{I_1}x_{il}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{z_{01i}}\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\\&\quad -\,\sum _{I_0}x_{il}\frac{\exp (\varvec{x}_i^{\prime }\varvec{\beta })}{z_{01i}}\bigg \{\frac{z_{21i}(1+z_{1i})-z_{2i}^2}{(1+z_{1i})^2}\bigg \}\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma })),\\ -\frac{\partial ^2 l}{\partial {\sigma }^2}&= -\frac{n_1}{\sigma ^2}\bigg \{1+\frac{2\log \lambda }{q\sigma }\bigg \}-\frac{2}{q\sigma ^3}\sum _{I_1}\log t_i\\&\quad +\,\frac{1}{\sigma ^3}\sum _{I_1}(\lambda t_i)^{q/\sigma }\log (\lambda t_i)\bigg \{\frac{2}{q}+\frac{\log (\lambda t_i)}{\sigma }\bigg \}\\&\quad -\,\sum _{I_1}\bigg [\bigg \{\frac{z_{21i}}{z_{2i}}-1\bigg \}\frac{\partial ^2}{\partial \sigma ^2}\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\bigg \{\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\bigg \}^2\bigg ]\\&\quad -\,\sum _{I_0}\bigg [\bigg \{\frac{z_{2i}}{1+z_{1i}}\bigg \}\frac{\partial ^2}{\partial \sigma ^2}\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{21i}(1+z_{1i})-z_{2i}^2}{(1+z_{1i})^2}\bigg \}\bigg \{\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\bigg \}^2\bigg ], \end{aligned}$$
$$\begin{aligned} -\frac{\partial ^2 l}{\partial {\lambda }^2}&= \frac{n_1}{q\sigma \lambda ^2}+\bigg (\frac{1}{\sigma }-\frac{1}{q}\bigg )\frac{1}{\sigma \lambda ^2}\sum _{I_1}(\lambda t_i)^{q/\sigma }\\&\quad -\,\sum _{I_1}\bigg [\bigg \{\frac{z_{21i}}{z_{2i}}-1\bigg \}\frac{\partial ^2}{\partial \lambda ^2}\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\bigg \{\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\bigg \}^2\bigg ]\\&\quad -\,\sum _{I_0}\bigg [\bigg \{\frac{z_{2i}}{1+z_{1i}}\bigg \}\frac{\partial ^2}{\partial \lambda ^2}\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{21i}(1+z_{1i})-z_{2i}^2}{(1+z_{1i})^2}\bigg \}\bigg \{\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\bigg \}^2\bigg ],\\ -\frac{\partial ^2l}{\partial \sigma \partial \lambda }&= \frac{n_1}{q\sigma ^2\lambda }-\frac{1}{q\sigma ^2\lambda }\sum _{I_1}(\lambda t_i)^{q/\sigma }\bigg \{1+\frac{q}{\sigma }\log (\lambda t_i)\bigg \}\\&\quad -\,\sum _{I_1}\bigg [\bigg \{\frac{z_{21i}}{z_{2i}}-1\bigg \}\frac{\partial ^2}{\partial \sigma \partial \lambda }\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{2i}z_{22i}-z_{21i}^2}{z_{2i}^2}\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\bigg ]\\&\quad -\,\sum _{I_0}\bigg [\bigg \{\frac{z_{2i}}{1+z_{1i}}\bigg \}\frac{\partial ^2}{\partial \sigma \partial \lambda }\log (S(t_i;\varvec{\gamma }))\\&\quad +\,\bigg \{\frac{z_{21i}(1+z_{1i})-z_{2i}^2}{(1+z_{1i})^2}\bigg \}\frac{\partial }{\partial \sigma }\log (S(t_i;\varvec{\gamma }))\frac{\partial }{\partial \lambda }\log (S(t_i;\varvec{\gamma }))\bigg ]. \end{aligned}$$

The above are defined for \(l,l^{\prime }=0,1,\ldots ,k,\,x_{i0}=1 \forall i=1,2,\ldots ,n\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, N., Pal, S. An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods. Comput Stat 30, 151–189 (2015). https://doi.org/10.1007/s00180-014-0527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-014-0527-9

Keywords