Skip to main content

Advertisement

Log in

A genetic algorithm for designing microarray experiments

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Heuristic techniques of optimization can be useful in designing complex experiments, such as microarray experiments. They have advantages over the traditional methods of optimization, particularly in situations where the search space is discrete. In this paper, a search procedure based on a genetic algorithm is proposed to find optimal (efficient) designs for both one- and multi-factor experiments. A genetic algorithm is a heuristic optimization method that exploits the biological evolution to obtain a solution of the problem. As an example, optimal designs for \(3\times 2\) factorial microarray experiments are presented for different numbers of arrays and for various sets of research questions. Comparisons between different operators of the genetic algorithm are performed by simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey R (2007) Designs for two-colour microarray experiments. J R Stat Soc Ser C (Appl Stat) 56(4):365–394

    Article  MathSciNet  Google Scholar 

  • Bailey R, Schiffl K, Hilgers R-D (2013) A note on robustness of D-optimal block designs for two-colour microarray experiments. J Stat Plan Inference 143(7):1195–1202

    Article  MathSciNet  MATH  Google Scholar 

  • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21(1 Suppl):33–37

    Article  Google Scholar 

  • Cheng C-S (1980) On the E-optimality of some block designs. J R Stat Soc Ser B 42(2):199–204

    MathSciNet  MATH  Google Scholar 

  • Duffull SB, Retout S, Mentré F (2002) The use of simulated annealing for finding optimal population designs. Comput Methods Progr Biomed 69(1):25–35

    Article  Google Scholar 

  • Glonek GFV, Solomon PJ (2004) Factorial and time course designs for cDNA microarray experiments. Biostatistics 5(1):89–111

    Article  MATH  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Gondro C, Kinghorn BP (2008) Optimization of cDNA microarray experimental designs using an evolutionary algorithm. IEEE/ACM Trans Comput Biol Bioinform 5(4):630–638

    Article  Google Scholar 

  • Hamada M, Martz HF, Reese CS, Wilson AG (2001) Finding near-optimal Bayesian experimental designs via genetic algorithms. Am Stat 55(3):175–181

    Article  MathSciNet  MATH  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • John JA, Mitchell TJ (1977) Optimal incomplete block designs. J R Stat Soc Ser B (Methodol) 39(1):39–43

    MathSciNet  MATH  Google Scholar 

  • Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 2(2):183–201

    Article  MATH  Google Scholar 

  • Kerr MK, Martin M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comput Biol 7(6):819–837

    Article  Google Scholar 

  • Landgrebe J, Bretz F, Brunner E (2006) Efficient design and analysis of two color factorial microarray design. Comput Stat Data Anal 50(2):499–517

    Article  MathSciNet  MATH  Google Scholar 

  • Latif AHMM, Bretz F, Brunner E (2009) Robustness considerations in selecting efficient two-color microarray designs. Bioinformatics 25(18):2355–2361

    Article  Google Scholar 

  • Vinciotti V, Khanin R, D’Alimonte D, Liu X, Cattini N, Hotchkiss G, Bucca G, de Jesus O, Rasaiyaah J, Smith CP, Kellam P, Wit E (2005) An experimental evaluation of a loop versus a reference design for two-channel microarrays. Bioinformatics 21(4):492–501

    Article  Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  • Wit E, Nobile A, Khanin R (2005) Near-optimal designs for dual channel microarray studies. J R Stat Soc Ser C (Appl Stat) 54(5):817–830

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfinger RD, Gibson G, Wilfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8(6):625–637

    Article  Google Scholar 

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30(4):e15

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the editor and referees for their constructive suggestions that help to improve the organisation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. M. Mahbub Latif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, A.H.M., Brunner, E. A genetic algorithm for designing microarray experiments. Comput Stat 31, 409–424 (2016). https://doi.org/10.1007/s00180-015-0618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0618-2

Keywords

Navigation