Skip to main content

Advertisement

Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we discuss Bayesian joint quantile regression of mixed effects models with censored responses and errors in covariates simultaneously using Markov Chain Monte Carlo method. Under the assumption of asymmetric Laplace error distribution, we establish a Bayesian hierarchical model and derive the posterior distributions of all unknown parameters based on Gibbs sampling algorithm. Three cases including multivariate normal distribution and other two heavy-tailed distributions are considered for fitting random effects of the mixed effects models. Finally, some Monte Carlo simulations are performed and the proposed procedure is illustrated by analyzing a group of AIDS clinical data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alhamzawi R, Yu K, Benoit DF (2012) Bayesian adaptive Lasso quantile regression. Stat Model 12:279–297

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement error in nonlinear models, 2nd edn. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Connick E, Lederman MM, Kotzin BL et al (2000) Immune reconstitution in the first year of potent antiretroviral therapy and its relationship to virologic response. J Infect Dis 181:358–363

    Article  Google Scholar 

  • Dagne GA, Huang YX (2012) Mixed-effects Tobit joint models for longitudinal data with skewness, detection limits, and measurement errors. J Probab Stat. doi:10.1155/2012/614102

    MathSciNet  MATH  Google Scholar 

  • Davino C, Furno M, Vistocco D (2014) Quantile regression: theory and applications. Wiley, New York

    MATH  Google Scholar 

  • Farcomeni A (2012) Quantile regression for longitudinal data based on latent Markov subject-specific parameters. J Stat Comput 22:141–152

    Article  MathSciNet  MATH  Google Scholar 

  • Galvao AF, Lamarche C, Lima LR (2013) Estimation of censored quantile regression for panel data with fixed effects. J Am Stat Assoc 108(503):1075–1089

    Article  MathSciNet  MATH  Google Scholar 

  • Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8:140–154

    Article  MATH  Google Scholar 

  • Hardle W, Simar L (2007) Applied multivariate statistical analysis, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • He X, Fu B, Fung WK (2003) Median regression for longitudinal data. Stat Med 22:3655–3669

    Article  Google Scholar 

  • Huang Y, Dagne G (2011) A Bayesian approach to joint mixed-effects models with a skew-normal distribution and measurement errors in covariates. Biometrics 67:260–269

    Article  MathSciNet  MATH  Google Scholar 

  • Kato K, Galvao AF, Gabriel VM (2012) Asymptotics for panel quantile regression models with individual effects. J Economet 170(1):76–91

    Article  MathSciNet  Google Scholar 

  • Kim MO, Yang Y (2011) Semiparametric approach to a random effects quantile regression model. J Am Stat Assoc 106(496):1405–1417

    Article  MathSciNet  MATH  Google Scholar 

  • Kobayashi G, Kozumi H (2013) Bayesian analysis of quantile regression for censored dynamic panel data. Comput Stat 27:359–380

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R (2004) Quantile regression for longitudinal data. J Multivar Anal 91(1):74–89

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Kotz S, Kozubowski TJ, Podgorski K (2001) The Laplace distribution and generalizations: a revisit with applications to communications, exonomics, engineering, and finance. Springer Press, New York

    Book  MATH  Google Scholar 

  • Kotz S, Nadarajah S (2004) Multivariate t-distributions and their applications. Cambridge University Press, London

    Book  MATH  Google Scholar 

  • Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565–1578

    Article  MathSciNet  MATH  Google Scholar 

  • Lachos VH, Chen MH, Abanto-Vallec CA, Azevedoa CL (2013) Quantile regression for censored mixed-effects models with applications to HIV studies. Stat Interface 8(2):203–215

    Article  MathSciNet  Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974

    Article  MATH  Google Scholar 

  • Lederman MM, Connick E, Landay A et al (1998) Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine and ritonavir: results of AIDS Clinical Trials Group Protocol 315. J Infect Dis 178:70–79

    Article  Google Scholar 

  • Li Q, Xi R, Lin N (2010) Bayesian regularized quantile regression. Bayesian Anal 5:533–556

    Article  MathSciNet  MATH  Google Scholar 

  • Liang H, Wu HL, Carroll RJ (2003) The relationship between virologic and immunologic responses in ADIS clinical research using mixed-effect varying-coefficient semiparametric models with measurement error. Biostatistics 4:297–312

    Article  MATH  Google Scholar 

  • Liu Y, Bottai M (2009) Mixed-effects models for conditional quantiles with longitudinal data. Int J Biostat. doi:10.2202/1557-4679.1186

    MathSciNet  Google Scholar 

  • Matos LA, Prates MO, H-Chen M, Lachos V, (2013) Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution. Stat Sin 23(3):1323–1345

  • Noh M, Wu L, Lee Y (2012) Hierarchical likelihood methods for nonlinear and generalized linear mixed models with missing data and measurement errors in covariates. J Multivar Anal 109:42–51

    Article  MathSciNet  MATH  Google Scholar 

  • Reich BJ, Fuentes M, Dunson DB (2011) Bayesian spatial quantile regression. J Am Stat Assoc 106:6–20

    Article  MathSciNet  MATH  Google Scholar 

  • Sriram K, Ramamoorthi RV, Ghosh P (2013) Posterior consistency of Bayesian quantile regression based on the misspecied asymmetric Laplace density. Bayesian Anal 8(2):479–504

    Article  MathSciNet  MATH  Google Scholar 

  • Tian YZ, Tian MZ, Zhu QQ (2014) Linear quantile regression based on EM algorithm. Commun Stat Theory Methods 43(16):3464–3484

    Article  MathSciNet  MATH  Google Scholar 

  • Tian YZ, Tang ML, Tian MZ (2016) Quantile regression for censored mixed effects models with measurement error in covariates with application to AIDS analysis (submitted)

  • Vaida F, Fitzgerald AP, DeGruttola V (2007) Efficient hybird EM for linear and nonlinear mixed effectsh models with censored response. Comput Stat Data Anal 51:5718–5730

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H (2009) Inference on quantile regression for heteroscedastic mixed models. Stat Sin 19:1247–1261

    MathSciNet  MATH  Google Scholar 

  • Wang HJ, Fygenson M (2009) Inference for censored quantile regression models in longitudinal studies. Ann Stat 37(2):756–781

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M, Sun XQ, Lu T (2015) Bayesian structured variable selection in linear regression models. Comput Stat 30:205–229

    Article  MathSciNet  Google Scholar 

  • Wu H, Zhang JT (2006) Nonparametric regression methods for longitudinal data analysis: mixed-effects modeling approaches. Wiley, New York

    MATH  Google Scholar 

  • Wu L (2002) A joint model for nonlinear mixed-effects models with censoring and covariates measured with error, with application to AIDS studies. J Am Stat Assoc 97:955–964

    Article  MATH  Google Scholar 

  • Wu L (2004) Simultaneous inference for longitudinal data with detection limits and covariates measured with error, with application to AIDS studies. Stat Med 23:1715–1731

    Article  Google Scholar 

  • Wu L (2010) Mixed effects models for complex data. Chapman and Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  • Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54:437–447

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank editors and two reviewers for their constructive comments and valuable suggestions which have greatly improved the paper. The work is partly supported by National Natural Science Foundation of China (Nos. 11501167, 11271368) and Key Scientific Research Project of Henan Province Universities of China (No. 15A110025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, E. & Tian, M. Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates. Comput Stat 31, 1031–1057 (2016). https://doi.org/10.1007/s00180-016-0659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0659-1

Keywords