Skip to main content
Log in

Efficient simulation from a gamma distribution with small shape parameter

  • Short Note
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Simulating from a gamma distribution with small shape parameter is a challenging problem. Towards an efficient method, we obtain a limiting distribution for a suitably normalized gamma distribution when the shape parameter tends to zero. Then this limiting distribution provides insight to the construction of a new, simple, and highly efficient acceptance–rejection algorithm. The proposed method is fast and comparisons based on acceptance rates show that it is more efficient than existing acceptance–rejection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abramowitz M, Stegun IA (1966) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover Publications Inc., New York

    MATH  Google Scholar 

  • Ahrens JH, Dieter U (1974) Computer methods for sampling from gamma, beta, Poisson and binomial distributions. Computing (Arch. Elektron. Rechnen) 12(3):223–246

    MATH  MathSciNet  Google Scholar 

  • Best DJ (1983) A note on gamma variate generators with shape parameter less than unity. Computing 30(2):185–188

    Article  MATH  MathSciNet  Google Scholar 

  • Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Brown LD (1986) Fundamentals of statistical exponential families with applications in statistical decision theory. In: Institute of mathematical statistics. Lecture notes—monograph Series, vol 9. Institute of Mathematical Statistics, Hayward

  • Devroye L (1986) Nonuniform random variate generation. Springer, New York

    Book  MATH  Google Scholar 

  • Flury BD (1990) Acceptance-rejection sampling made easy. SIAM Rev 32(3):474–476

    Article  MATH  MathSciNet  Google Scholar 

  • Fraser DAS, Reid N, Wong A (1997) Simple and accurate inference for the mean of a gamma model. Can J Stat 25(1):91–99

    Article  MATH  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1(3):515–533

    Article  MATH  MathSciNet  Google Scholar 

  • Givens GH, Hoeting JA (2005) Computational statistics. In: Wiley series in probability and statistics. Wiley, Hoboken

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. In: Wiley series in probability and mathematical statistics: applied probability and statistics. Wiley, New York

  • Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. In: Wiley series in probability and statistics. Wiley, Hoboken

  • Kundu D, Gupta RD (2007) A convenient way of generating gamma random variables using generalized exponential distribution. Comput Stat Data Anal 51(6):2796–2802

    Article  MATH  MathSciNet  Google Scholar 

  • Lange K (1999) Numerical analysis for statisticians. Springer, New York (Statistics and Computing)

    MATH  Google Scholar 

  • Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012) The BUGS book. CRC Press/Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • Marin J-M, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian computational methods. Stat Comput 22(6):1167–1180

    Article  MATH  MathSciNet  Google Scholar 

  • Marsaglia G, Tsang WW (2000) A simple method for generating gamma variables. ACM Trans Math Softw 26(3):363–372

    Article  MATH  MathSciNet  Google Scholar 

  • Martin R, Liu C (2015) Marginal inferential models: prior-free probabilistic inference on interest parameters. J Am Stat Assoc 110:1621–1631

    Article  MATH  MathSciNet  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Tanizaki H (2008) A simple gamma random number generator for arbitrary shape parameters. Econ Bull 3:1–10

    Google Scholar 

  • Xi B, Tan KM, Liu C (2013) Logarithmic transformation based gamma random number generators. J Stat Softw 55(4):1–17

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments on a previous version of this manuscript. This work was partially supported by the U.S. National Science Foundation, Grants DMS–1208833 and DMS–1208841.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Martin, R. & Syring, N. Efficient simulation from a gamma distribution with small shape parameter. Comput Stat 32, 1767–1775 (2017). https://doi.org/10.1007/s00180-016-0692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0692-0

Keywords

Navigation