Skip to main content
Log in

Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This article redefines the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) processes under a weaker condition that the second moment is finite, and studies the quasi-likelihood inference for the new model. The ergodicity of the new processes is discussed. Quasi-likelihood estimators for the model parameters and the asymptotic properties are obtained. Confidence regions of the parameters based on the quasi-likelihood method are given. A simulation study is conducted for the evaluation of the proposed approach and an application to a real data example is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Osh MA, Alzaid AA (1987) First-order integer-valued autoregressive (INAR(1)) process. J Time Ser Anal 8:261–275

    Article  MATH  MathSciNet  Google Scholar 

  • Al-Osh MA, Alzaid AA (1991) Binomial autoregressive moving average models. Commun Stat Stoch Models 7:261–282

    Article  MATH  MathSciNet  Google Scholar 

  • Al-Osh MA, Alzaid AA (1992) First order autoregressive time series with negative binomial and geometric marginals. Commun Stat Theory Methods 21:2483–2492

    Article  MATH  MathSciNet  Google Scholar 

  • Alzaid AA, Al-Osh MA (1988) First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties. Stat Neerlandica 42(1):53–61

    Article  MATH  MathSciNet  Google Scholar 

  • Aue A, Horváth L (2011) Quasi-likelihood estimation in stationary and nonstationary autoregressive models with random coefficients. Stat Sin 21:973–999

    MATH  MathSciNet  Google Scholar 

  • Azrak R, Mélard G (1998) The exact quasi-likelihood of time-dependent ARMA models. J Stat Plan Inference 68:31–45

    Article  MATH  MathSciNet  Google Scholar 

  • Azrak R, Mélard G (2006) Asymptotic properties of quasi-maximum likelihood estimators for ARMA models with time-dependent coefficients. Stat Inference Stoch Process 9:279–330

    Article  MATH  MathSciNet  Google Scholar 

  • Billingsley P (1961) Statistical inference for Markov processes. The University of Chicago Press, Chicago

    MATH  Google Scholar 

  • Christou V, Fokianos K (2014) Quasi-likelihood inference for negative binomial time series models. J Time Ser Anal 35:55–78

    Article  MATH  MathSciNet  Google Scholar 

  • Du JG, Li Y (1991) The integer-valued autoregressive (INAR(\(p\))) model. J Time Ser Anal 12:129–142

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P, Heyde CC (1980) Martingale limit theory and its applation. Academic Press, New York

    MATH  Google Scholar 

  • Jung SH (1996) Quasi-likelihood for median regression models. J Am Stat Assoc 91:251–257

    Article  MATH  MathSciNet  Google Scholar 

  • Kim HY, Park Y (2008) A non-stationary integer-valued autoregressive model. Stat Pap 49:485–502

    Article  MATH  MathSciNet  Google Scholar 

  • Kreiss J, Lahiri SN (2012) Bootstrap methods for time series. In: Rao TS, Rao SS, Rao CR (eds) Handbook of statistics, vol 30. Elsevier, Amsterdam, pp 1–24

    Google Scholar 

  • Li D, Tong H (2016) Nested sub-sample search algorithm for estimation of threshold models. Stat Sin 26:1543–1554

    MATH  MathSciNet  Google Scholar 

  • Li C, Wang D, Zhang H (2015) First-order mixed integer-valued autoregressive processes with zero-inflated generalized power series innovations. J Korean Stat Soc 44:232–246

    Article  MATH  MathSciNet  Google Scholar 

  • Ling S (2007) Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models. J Econom 140:849–873

    Article  MATH  MathSciNet  Google Scholar 

  • Lu JC, Chen D, Zhou W (2006) Quasi-likelihood estimation for GLM with random scales. J Stat Plan Inference 136:401–429

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Monteiro M, Scotto MG, Pereira I (2012) Integer-valued self-exciting threshold autoregressive processes. Commun Stat Theory Method 41:2717–2737

    Article  MATH  MathSciNet  Google Scholar 

  • Möller TA, Weiß CH (2015) Stochastic models, statistics and their applications. In: Steland (ed) Threshold models for integer-valued time series with infinte and finte range Springer Proceedings in Mathematics and Statistics. Springer, Berlin, pp 327–334

    Google Scholar 

  • Niaparast M, Schwabe R (2013) Optimal design for quasi-likelihood estimation in Poisson regression with random coefficients. J Stat Plan Inference 143:296–306

    Article  MATH  MathSciNet  Google Scholar 

  • Ristić MM, Bakouch HS, Nastić AS (2009) A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J Stat Plan Inference 139:2218–2226

    Article  MATH  MathSciNet  Google Scholar 

  • Ruiz E (1994) Quasi-maximum likelihood estimation of stochastic volatility models. J Econom 1994(63):289–306

    Article  MATH  Google Scholar 

  • Severini TA, Staniswalis JG (1994) Quasilikelihood estimation in semiparametric models. J Am Stat Assoc 89:501–511

    Article  MATH  Google Scholar 

  • Scotto MG, Weiß CH, Gouveia S (2015) Thinning-based models in the analysis of integer-valued time series: a review. Stat Model 15:590–618

    Article  MathSciNet  Google Scholar 

  • Steutel F, van Harn K (1979) Discrete analogues of self-decomposability and stability. Ann Probab 7:893–899

    Article  MATH  MathSciNet  Google Scholar 

  • Sutardhar BC, Rao RP (2001) On marginal quasi-likelihood inference in generalized linear mixed models. J Multivar Anal 76:1–34

    Article  MathSciNet  Google Scholar 

  • Tong H (1978) On a threshold model. In: Chen CH (ed) Pattern recognition and signal processing. Sijthoff and Noordhoff, Amsterdam, pp 575–586

    Chapter  Google Scholar 

  • Tong H, Lim KS (1980) Threshold autoregressive, limit cycles and cyclical data. J R Stat Soc B 42:245–292

    MATH  Google Scholar 

  • Tweedie RL (1975) Sufficient conditions for regularity, recurrence and ergocidicity of Markov process. Stoch Process Appl 3:385–403

    Article  Google Scholar 

  • Wang C, Liu H, Yao J, Davis RA, Li WK (2014) Self-excited threshold Poisson autoregression. J Am Stat Assoc 2014(109):777–787

    Article  MATH  MathSciNet  Google Scholar 

  • Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 1974(61):439–447

    MATH  MathSciNet  Google Scholar 

  • Weiß CH (2008) Thinning operations for modeling time series of counts—a survey. Adv Stat Anal 92:319–343

    Article  MathSciNet  Google Scholar 

  • Yang K, Wang D, Jia B, Li H (2017) An integer-valued threshold autoregressive process based on negative binomial thinning. Stat Pap. doi:10.1007/s00362-016-0808-1

    Google Scholar 

  • Zhang H, Wang D, Zhu F (2010) Inference for INAR(\(p\)) processes with signed generalized powerseries thinning operator. J Stat Plan Inference 140:667–683

    Article  MATH  Google Scholar 

  • Zheng H, Basawa IV (2008) First-order observation-driven integer-valued autoregressive processes. Stat Prob Lett 78:1–9

    Article  MATH  MathSciNet  Google Scholar 

  • Zheng H, Basawa IV, Datta S (2006a) Inference for \(p\)th order random coefficient integer-valued autoregressive processes. J Time Ser Anal 27:411–440

    Article  MATH  MathSciNet  Google Scholar 

  • Zheng H, Basawa IV, Datta S (2006b) First-order random coefficient integer-valued autoregressive processes. J Stat Plan Inference 137:212–229

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 11271155, 11371168, J1310022, 11571138, 11501241, 11571051, 11301137), National Social Science Foundation of China (16BTJ020), Science and Technology Research Program of Education Department in Jilin Province for the 12th Five-Year Plan (440020031139) and Jilin Province Natural Science Foundation (20150520053JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehui Wang.

Appendix

Appendix

Proof of Proposition 2.1

According to Theorem 3.1 of Tweedie (1975)(or Proposition 2.2 of Zheng and Basawa 2008), the sufficient condition of \(\{X_t\}\) to be ergodic is that there exists a set K and a non-negative measurable function g on state space \(\mathbb {N}_0\) such that

$$\begin{aligned} \int _{\mathbb {N}_0}P(x,dy)g(y)\le g(x)-1,~~x\notin K, \end{aligned}$$
(5.1)

and for some fixed B

$$\begin{aligned} \int _{\mathbb {N}_0}P(x,dy)g(y)=\lambda (x)\le B<\infty ,~~x\in K, \end{aligned}$$
(5.2)

where \(P(x,A)=P(X_1\in A|X_0=x).\) Let \(g(x)=x,\) we have

$$\begin{aligned} \int _{\mathbb {N}_0}g(y)dP(X_1=y|X_0=x_0)&=E(X_1|X_0=x_0) =\alpha _1x_0I_{0,1}+\alpha _2x_0I_{0,2}+\lambda \\&\le \alpha _{\max }x_0+\lambda , \end{aligned}$$

where \(\alpha _{\max }=\max \{\alpha _1,\alpha _2\}<1.\) let \(N=[\frac{1+\lambda }{1-\alpha _{\max }}]+1\), where [x] denotes the integer part of x. Then for \(x_0\ge N,\) we have

$$\begin{aligned} \alpha _{\max }x_0+\lambda \le x_0-1=g(x_0)-1, \end{aligned}$$

and for \(0\le x_0\le N-1,\)

$$\begin{aligned} \int _{\mathbb {N}_0}g(y)dP(X_1=y|X_0=x_0)&=E(X_1|X_0=x_0) \le \alpha _{\max }x_0+\lambda \le N+\lambda <\infty . \end{aligned}$$

Let \(K=\{0,1, \ldots ,N-1\},\) then (5.1) and (5.2) both hold which completes the proof. \(\square \)

Proof of Theorem 2.1

First, we suppose \(\varvec{\theta }\) is known. Let \(\mathcal {F}_t=\sigma (X_0,X_1, \ldots ,X_t)\) be the \(\sigma \)-field generated by \(\{X_0,X_1, \ldots ,X_t\}\). For the following estimation equations:

$$\begin{aligned} S_n^{(1)}(\varvec{\theta },\varvec{\beta })=\sum _{t=1}^n V_{\varvec{\theta }}^{-1}(X_t|X_{t-1})(X_t-\alpha _1X_{t-1}I_{1,t}-\alpha _2X_{t-1}I_{2,t}-\lambda )I_{1,t}X_{t-1}, \end{aligned}$$

we have

$$\begin{aligned}&E[V_{\varvec{\theta }}^{-1}(X_t|X_{t-1})(X_t-\alpha _1X_{t-1}I_{1,t}-\alpha _2X_{t-1}I_{2,t}-\lambda )I_{1,t}X_{t-1}|\mathcal {F}_{t-1}]\\&\quad =V_{\varvec{\theta }}^{-1}(X_t|X_{t-1})I_{1,t}X_{t-1}E[(X_t-\alpha _1X_{t-1}I_{1,t}-\alpha _2X_{t-1}I_{2,t}-\lambda )|\mathcal {F}_{t-1}]\\&\quad =0, \end{aligned}$$

and

$$\begin{aligned}&E[S_t^{(1)}(\varvec{\theta },\varvec{\beta })|\mathcal {F}_{t-1}]\\&\quad =E[(V_{\varvec{\theta }}^{-1}(X_t|X_{t-1})(X_t-\alpha _1X_{t-1}I_{1,t}-\alpha _2X_{t-1}I_{2,t}-\lambda )I_{1,t}X_{t-1}\\&\qquad +S_{t-1}^{(1)}(\varvec{\theta },\varvec{\beta }))|\mathcal {F}_{t-1}]\\&\quad =S_{t-1}^{(1)}(\varvec{\theta },\varvec{\beta }). \end{aligned}$$

Thus, \(\{S_t^{(1)}(\varvec{\theta },\varvec{\beta }),\mathcal {F}_{t},~t\ge 0\}\) is a martingale. By (C1) and Theorem 1.1 in Billingsley (1961),

$$\begin{aligned}&\frac{1}{n}\sum _{t=1}^n V_{\varvec{\theta }}^{-2}(X_t|X_{t-1})(X_t-\alpha _1X_{t-1}I_{1,t}-\alpha _2X_{t-1}I_{2,t}-\lambda )^2X_{t-1}^2I_{1,t}\\&\quad \overset{a.s.}{\longrightarrow }E\left( V_{\varvec{\theta }}^{-2}(X_1|X_{0})(X_1-\alpha _1X_{0}I_{1,1}-\alpha _2X_{0}I_{2,1}-\lambda )^2X_0^2I_{1,1}\right) \\&\quad = E\left( E[V_{\varvec{\theta }}^{-2}(X_1|X_{0})(X_1-\alpha _1X_{0}I_{1,1}-\alpha _2X_{0}I_{2,1}-\lambda )^2X_0^2I_{1,1}|X_0]\right) \\&\quad = E[V_{\varvec{\theta }}^{-1}(X_1|X_0)X_0^2I_{1,1}]\\&\quad = T_{11}(\varvec{\theta }). \end{aligned}$$

Hence, by Corollary 3.2 in Hall and Heyde (1980) and the central limit theorem of martingale, we have,

$$\begin{aligned} \frac{1}{\sqrt{n}}S_n^{(1)}(\varvec{\theta },\varvec{\beta })\overset{L}{\longrightarrow }N(0,T_{11}(\varvec{\theta })). \end{aligned}$$

Similarly,

$$\begin{aligned} S_n^{(2)}(\varvec{\theta },\varvec{\beta })=\sum _{t=1}^n V_{\varvec{\theta }}^{-1}(X_t|X_{t-1})(X_t-\alpha _1X_{t-1}I_{1,t}-\alpha _2X_{t-1}I_{2,t}-\lambda )I_{2,t}X_{t-1}, \end{aligned}$$

and

$$\begin{aligned} S_n^{(3)}(\varvec{\theta },\varvec{\beta })=\sum _{t=1}^n V_{\varvec{\theta }}^{-1}(X_t|X_{t-1})(X_t-\alpha _1X_{t-1}I_{1,t}-\alpha _2X_{t-1}I_{2,t}-\lambda ), \end{aligned}$$

We can verify that \(\{S_t^{(i)}(\varvec{\theta },\varvec{\beta }),\mathcal {F}_{t},~t\ge 0\}\) \((i=2,3)\) are also martingales. Similar to the previous discussion, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}S_n^{(i)}(\varvec{\theta },\varvec{\beta })\overset{L}{\longrightarrow }N(0,T_{ii}(\varvec{\theta })),~i=2,3. \end{aligned}$$

By Cramer-Wold device, for any \(\varvec{c}^\textsf {T}=(c_1,c_2,c_3) \in \mathbb {R}^3\) and \((c_1,c_2,c_3)\ne (0,0,0)\), we have

$$\begin{aligned} \frac{\varvec{c}^\textsf {T}}{\sqrt{n}}\left( \begin{array}{c} S_n^{(1)}(\varvec{\theta },\varvec{\beta })\\ S_n^{(2)}(\varvec{\theta },\varvec{\beta })\\ S_n^{(3)}(\varvec{\theta },\varvec{\beta }) \end{array}\right)&=\frac{1}{\sqrt{n}}\sum _{i=1}^3 c_iS_n^{(i)}(\varvec{\theta },\varvec{\beta })\\&=\frac{1}{\sqrt{n}}\sum _{t=1}^n V_{\varvec{\theta }}^{-1}(X_t|X_{t-1})(X_t-\alpha _1X_{t-1}I_{1,t}-\alpha _2X_{t-1}I_{2,t}-\lambda )\\&\quad \cdot (c_1I_{1,t}X_{t-1}+c_2I_{2,t}X_{t-1}+c_3)\\&\overset{L}{\longrightarrow } N(0,E[V_{\varvec{\theta }}^{-1}(X_1|X_0)(c_1 X_{0}I_{1,1}+c_2 X_{0}I_{2,1}+c_3)^2]), \end{aligned}$$

implying

$$\begin{aligned} \frac{1}{\sqrt{n}}\left( \begin{array}{c} S_n^{(1)}(\varvec{\theta },\varvec{\beta })\\ S_n^{(2)}(\varvec{\theta },\varvec{\beta })\\ S_n^{(3)}(\varvec{\theta },\varvec{\beta }) \end{array}\right)&\overset{L}{\longrightarrow } N\left( \varvec{0},\varvec{T}(\varvec{\theta })\right) . \end{aligned}$$

Now, we replace \(V_{\varvec{\theta }}(X_t|X_{t-1})\) with \(V_{\hat{\varvec{\theta }}}(X_t|X_{t-1})\), where \(\hat{\varvec{\theta }}\) is a consistent estimator of \({\varvec{\theta }}\). Then we want

$$\begin{aligned} \frac{1}{\sqrt{n}}\left( \begin{array}{c} S_n^{(1)}(\hat{\varvec{\theta }},\varvec{\beta })\\ S_n^{(2)}(\hat{\varvec{\theta }},\varvec{\beta })\\ S_n^{(3)}(\hat{\varvec{\theta }},\varvec{\beta }) \end{array}\right)&\overset{L}{\longrightarrow } N\left( \varvec{0},\varvec{T}(\varvec{\theta })\right) . \end{aligned}$$
(5.3)

To prove (5.3), we need to check that

$$\begin{aligned} \frac{1}{\sqrt{n}}S_n^{(i)}(\hat{\varvec{\theta }},\varvec{\beta })-\frac{1}{\sqrt{n}}S_n^{(i)}({\varvec{\theta }},\varvec{\beta })\overset{P}{\longrightarrow }0,~i=1,2,3. \end{aligned}$$
(5.4)

Let \(R_n(\varvec{\theta })=(1/\sqrt{n})S_n^{(1)}(\varvec{\theta },\varvec{\beta })\). Then for any \(\varepsilon >0\) and \(\delta >0\), we have

$$\begin{aligned} P(|R_n(\hat{\varvec{\theta }})-R_n(\varvec{\theta })|>\varepsilon )&\le \sum _{i=1}^2P(|\hat{\theta }_i-\theta _i|>\delta )+P(|\hat{\sigma }_z^2-\sigma _z^2|>\delta )\\&\quad +P(\sup _D|R_n(\varvec{\theta }_1)-R_n(\varvec{\theta })|>\varepsilon ), \end{aligned}$$

where \(\varvec{\theta }_1=(\theta _1^{1},\theta _2^{1},\sigma _1^{2})^\textsf {T}, D:=\{|\theta _1^{1}-\theta _1|<\delta ,|\theta _2^{1}-\theta _2|<\delta ,|\sigma _1^{2}-\sigma _z^2|<\delta \}.\) If \(\hat{\varvec{\theta }}\) is a consistent estimator of \({\varvec{\theta }}\), then we just need to prove that

$$\begin{aligned} P\left( \sup _D|R_n(\varvec{\theta }_1)-R_n(\varvec{\theta })|>\varepsilon \right) \overset{P}{\longrightarrow }0. \end{aligned}$$

By Markov inequality,

$$\begin{aligned}&P\left( \sup _D|R_n(\varvec{\theta }_1)-R_n(\varvec{\theta })|>\varepsilon \right) \nonumber \\&\quad \le \frac{1}{\varepsilon ^2}E\left( \sup _D(R_n(\varvec{\theta }_1)-R_n(\varvec{\theta }))^2\right) \nonumber \\&\quad =\frac{1}{\varepsilon ^2}E\left( \sup _D\frac{1}{n}\sum _{t=1}^n(V_{\varvec{\theta }_1}^{-1}(X_t|X_{t-1})-V_{\varvec{\theta }}^{-1}(X_t|X_{t-1}))^2 \left( X_t-\sum _{i=1}^2\alpha _iI_{i,t}X_{t-1}-\lambda \right) ^2X_{t-1}^2I_{1,t}\right) \nonumber \\&\quad =\frac{1}{\varepsilon ^2}E\left( \sup _D(V_{\varvec{\theta }_1}^{-1}(X_1|X_{0})-V_{\varvec{\theta }}^{-1}(X_1|X_{0}))^2 \left( X_1-\sum _{i=1}^2\alpha _iI_{i,t}X_{0}-\lambda \right) ^2X_{0}^2I_{1,1}\right) \nonumber \\&\quad =\frac{1}{\varepsilon ^2}E\left( \sup _D \frac{\left( \sum _{i=1}^2\left( \theta _i-\theta _i^1\right) X_0I_{i,1}+\left( \sigma _z^2-\sigma _1^2\right) \right) ^2}{V_{\varvec{\theta }_1}^{2}(X_1|X_{0})V_{\varvec{\theta }}^{2}(X_1|X_{0})} \left( X_1-\sum _{i=1}^2\alpha _iI_{i,t}X_{0}-\lambda \right) ^2X_{0}^2I_{1,1}\right) \nonumber \\&\quad =\frac{1}{\varepsilon ^2}E\left( \sup _D \frac{\left( \sum _{i=1}^2\left( \theta _i-\theta _i^1\right) X_0I_{i,1}+\left( \sigma _z^2-\sigma _1^2\right) \right) ^2}{V_{\varvec{\theta }_1}^{2}(X_1|X_{0})V_{\varvec{\theta }}(X_1|X_{0})} X_{0}^2I_{1,1}\right) \nonumber \\&\quad \le \frac{1}{\varepsilon ^2}\sup _D \left\{ ((\theta _1-\theta _1^1)^2 m_1 +(\theta _2-\theta _2^1)^2 m_2 +(\sigma _z^2-\sigma _1^2)^2 m_3 +2m_4|\theta _1-\theta _1^2||\theta _2-\theta _2^1|\right. \nonumber \\&\quad \quad \left. +2m_5|\theta _1-\theta _1^1||\sigma _z^2-\sigma _1^2|+2m_6|\theta _2-\theta _2^1||\sigma _z^2-\sigma _1^2|) X_{0}^2I_{1,1}\right\} \nonumber \\&\quad \le \frac{C\delta ^2}{\varepsilon ^2}, \end{aligned}$$
(5.5)

where \(m_i~(i=1,2, \ldots ,6)\) denote some finite moments of process \(\{X_t\}\), C is a positive constant. Similar argument can be used for \(1/\sqrt{n}S_n^{(i)}(\varvec{\theta },\varvec{\beta })(i=2,3)\). For any fixed \(\varepsilon >0\), letting \(\delta \rightarrow 0\), we get our assertion which in turn establishes (5.3).

Finally, by the ergodic theorem, we have

$$\begin{aligned} \frac{1}{n}\varvec{Q}_n\overset{P}{\longrightarrow }\varvec{T}(\varvec{\theta }). \end{aligned}$$

After some algebra, we have,

$$\begin{aligned} (\hat{\varvec{\beta }}_{MQL}-\varvec{\beta })=\varvec{Q}_n^{-1} \left( \begin{array}{c} S_n^{(1)}(\hat{\varvec{\theta }},\varvec{\beta })\\ S_n^{(2)}(\hat{\varvec{\theta }},\varvec{\beta })\\ S_n^{(3)}(\hat{\varvec{\theta }},\varvec{\beta }) \end{array}\right) , \end{aligned}$$

Therefore,

$$\begin{aligned} \sqrt{n}(\hat{\varvec{\beta }}_{MQL}-\varvec{\beta })=\left( \frac{1}{n}\varvec{Q}_n\right) ^{-1} \frac{1}{\sqrt{n}} \left( \begin{array}{c} S_n^{(1)}(\hat{\varvec{\theta }},\varvec{\beta })\\ S_n^{(2)}(\hat{\varvec{\theta }},\varvec{\beta })\\ S_n^{(3)}(\hat{\varvec{\theta }},\varvec{\beta }) \end{array}\right) \overset{L}{\longrightarrow }N(\varvec{0},\varvec{T}^{-1}(\varvec{\theta })). \end{aligned}$$
(5.6)

The proof is complete. \(\square \)

Proof of Theorem 2.2

The proof follows by the ergodic theorem. \(\square \)

Proof of Theorem 2.3

The proof follows from Theorem 2.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, K. & Wang, D. Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes. Comput Stat 32, 1597–1620 (2017). https://doi.org/10.1007/s00180-017-0748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0748-9

Keywords