Skip to main content
Log in

Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper is concerned with the multivariate 3rd moment and its estimation. Mardia (Biometrika 57:519–530, 1970) and Srivastava (Stat Probab Lett 2:263–267, 1984) proposed the multivariate skewness and its estimator, independently. However, these estimators cannot be defined for the case in which the dimension p is larger than the sample size N. In this paper, we treat the multivariate 3rd moment \(\gamma \) which is defined by using Hadamard product of observation vectors, and propose an estimate of \(\gamma \) which is well defined when \(p>N\). Based on the estimator, we propose a new test for multivariate normality. Under the null hypothesis, the test statistic is asymptotically standard normal, which is supported by Monte Carlo simulations. We calculate some empirical powers to see the performance of the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen SX, Zhang LX, Zhong PS (2010) Tests for high-dimensional covariance matrices. J Am Stat Assoc 105:810–819

    Article  MathSciNet  MATH  Google Scholar 

  • Doornik JA, Hansen H (2008) An omnibus test for univariate and multivariate normality. Oxf Bull Econ Stat 70:927–939

    Article  Google Scholar 

  • Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97:77–87

    Article  MathSciNet  MATH  Google Scholar 

  • Fujikoshi Y, Ulyanov VV, Shimizu R (2010) Multivariate statistics high-dimensional and large-sample approximations. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Henze N (2002) Invariant tests for multivariate normality: a critical review. Stat Pap 43:467–506

    Article  MathSciNet  MATH  Google Scholar 

  • Himeno T, Yamada T (2014) Estimations for some functions of covariance matrix in high dimension under non-normality and its applications. J Multivariate Anal 130:27–44

    Article  MathSciNet  MATH  Google Scholar 

  • Holgersson HET (2006) A graphical method for assessing multivariate normality. Comput Stat 21:141–149

    Article  MathSciNet  MATH  Google Scholar 

  • Holgersson HET, Mansoor R (2013) Assessing normality of high-dimensional data. Commun Stat Simul Comput 42:360–369

    Article  MathSciNet  MATH  Google Scholar 

  • Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat Rev 55:163–172

    Article  MathSciNet  MATH  Google Scholar 

  • Kankainen A, Taskinen S, Oja H (2007) Tests of multinormality based on location vectors and scatter matrices. Stat Methods Appl 16:357–379

    Article  MathSciNet  MATH  Google Scholar 

  • Kubokawa T, Srivastava MS (2008) Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data. J Multivariate Anal 99:1906–1928

    Article  MathSciNet  MATH  Google Scholar 

  • Mansoor R (2017) Using principal components to test normality of high-dimensional data. Commun Stat Simul Comput 46:3396–3405

    MathSciNet  MATH  Google Scholar 

  • Mardia KV (1970) Measures of multivariate skewness and kurtosis with applications. Biometrika 57:519–530

    Article  MathSciNet  MATH  Google Scholar 

  • Mecklin CJ, Mundfrom DJ (2004) An appraisal and bibliography of tests for multivariate normality. Int Stat Rev 72:123–138

    Article  MATH  Google Scholar 

  • Schott JR (2005) Matrix analysis for statistics, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Srivastava MS (1984) A measure of skewness and kurtosis and a graphical method for assessing multivariate normality. Stat Probab Lett 2:263–267

    Article  MathSciNet  Google Scholar 

  • Srivastava MS (2002) Methods of multivariate statistics. Wiley, New York

    MATH  Google Scholar 

  • Thulin M (2014) Tests for multivariate normality based on canonical correlations. Stat Methods Appl 23:189–208

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank an associate editor and two referees for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Yamada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Takayuki Yamada is partially supported by Ministry of Education, Science, Sports, and Culture, a Grant-in-Aid for Scientific Research (Wakate B), 26800088, 2014–2017. Tetsuto Himeno is partially supported by Ministry of Education, Science, Sports, and Culture, a Grant-in-Aid for Scientific Research (Wakate B), 16K16018, 2016–2018.

Appendices

Moment of statistic

In this section, analytic forms of \(\mathrm {Var}(T_1)\), \(\mathrm {Var}(T_2)\) and \(\mathrm {Var}(T_3)\) are proposed. We derive them by using the following lemma (Lemma 1). Proofs of Lemma 1 is tedious but simple, therefore skipped.

Lemma 1

Let \(\varvec{z}\) be a random vector distributed as \(N_p(\varvec{0},\varvec{I}_p)\), and \(\varvec{a}\) and \(\varvec{b}\) be constant vectors. Then,

$$\begin{aligned}&E[(\varvec{a}'\varvec{z})^2]=\varvec{a}'\varvec{a}, \\&E[(\varvec{a}'\varvec{z})^4]=3(\varvec{a}'\varvec{a})^2, \\&E[(\varvec{a}'\varvec{z})^2(\varvec{b}'\varvec{z})^2] =2(\varvec{a}'\varvec{b})^2+\varvec{a}'\varvec{a}\varvec{b}'\varvec{b}, \\&E[(\varvec{a}'\varvec{z})^3\varvec{b}'\varvec{z}]=3\varvec{a}'\varvec{a}\varvec{a}'\varvec{b}, \\&E[(\varvec{a}'\varvec{z})^6]=15(\varvec{a}'\varvec{a})^3, \\&E[(\varvec{a}'\varvec{z})^3(\varvec{b}'\varvec{z})^3]=6(\varvec{a}'\varvec{b})^3 +9\varvec{a}'\varvec{a}\varvec{a}'\varvec{b} \varvec{b}'\varvec{b}. \end{aligned}$$

Here, we write analytic forms of \(\mathrm {Var}(T_1)\), \(\mathrm {Var}(T_2)\) and \(\mathrm {Var}(T_3)\) in the following lemma.

Lemma 2

For \(T_1\), \(T_2\) and \(T_3\), as defined in Sect. 2.1,

$$\begin{aligned}&\mathrm {Var}(T_1)= \frac{6}{N} \varvec{1}_p' ( \odot ^3 \varvec{{\varSigma }} ) \varvec{1}_p, \\&\mathrm {Var}(T_2)= \frac{18}{N(N-1)} \varvec{1}_p' ( \odot ^3 \varvec{{\varSigma }} ) \varvec{1}_p, \\&\mathrm {Var}(T_3) =\frac{24}{N(N-1)(N-2)} \varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p. \end{aligned}$$

Proof

We can express that

$$\begin{aligned} T_1 = \frac{1}{\sqrt{N}} \sum _{i=1}^N \zeta _i, \end{aligned}$$

where

$$\begin{aligned} \zeta _i = \sum _{\ell =1}^p \frac{ (\varvec{a}_{\ell }'\varvec{z}_i)^3-3 \varvec{a}_{\ell }'\varvec{a}_{\ell }\varvec{a}_{\ell }'\varvec{z}_i }{ \sqrt{N}} \quad (i=1,\ldots ,N). \end{aligned}$$

Since \(\zeta _1,\ldots ,\zeta _N\) are i.i.d., it holds that

$$\begin{aligned} \mathrm {Var}(T_1) = \mathrm {Var} \left( \sum _{\ell =1}^p \frac{ (\varvec{a}_{\ell }'\varvec{z})^3-3\varvec{a}_{\ell }'\varvec{a}_{\ell }\varvec{a}_{\ell }'\varvec{z} }{\sqrt{N} } \right) , \end{aligned}$$

where \(\varvec{z} \sim N_p(\varvec{0},\varvec{I}_p)\). We find that

$$\begin{aligned} E \left[ \sum _{\ell =1}^p \frac{ (\varvec{a}_{\ell }'\varvec{z})^3-3\varvec{a}_{\ell }'\varvec{a}_{\ell }\varvec{a}_{\ell }'\varvec{z} }{\sqrt{N} }\right] =0, \end{aligned}$$

and so

figure d

where the third equality follows from Lemma 1.

Since \(E[T_2]=0\), we have

figure e

where the fourth equality follows from Lemma 1.

Since \(E[T_3]=0\), we have

figure f

where the fourth equality follows from Lemma 1. \(\square \)

Derivation of the unbiasedness for T and V

In this section, we show that T and V, which are defined by (5) and (6), are unbiased estimators of \(E[\{\odot ^3 (\varvec{x}-\varvec{\mu })\}'\varvec{1}_p]\) and \(\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\), respectively.

Lemma 3

Assume that \(\varvec{x}_1\), ..., \(\varvec{x}_N\) are i.i.d., and assume that these random vectors have the multivariate linear model (3). Then T and V are unbiased estimators of \(E[\{\odot ^3 (\varvec{x}-\varvec{\mu })\}'\varvec{1}_p]\) and \(\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\), respectively.

Proof

If k, \(\ell \) and \(\alpha \) are all different, then it is easy to see that \(E[t_{k \ell \alpha ,i}^3]=(3/4)E[(x_i-\mu _i)^3]\) for \((t_{k \ell \alpha ,1},\ldots ,t_{k \ell \alpha ,p})'=\varvec{t}_{k \ell \alpha }\), and for \(\begin{pmatrix} x_1 \ldots x_p \end{pmatrix}'=\varvec{x}=\varvec{\mu }+\varvec{{\varSigma }}^{1/2}\varvec{z}\) with \(\varvec{z} \sim F_p(\varvec{0},\varvec{I}_p)\). Adding up over the \(\mathrm {P}_{N,3}\) such triples, multiplying by 4 / 3 and dividing \(\mathrm {P}_{N,3}\) gives an unbiased estimate of \(E[(x_i-\mu _i)^3]\). By adding up it over i, we obtain T. It is also easy to see that \(E[v_{k \ell ,i j} v_{\alpha \beta ,i j} v_{\gamma \delta ,i j} ]=\sigma _{ij}^3\) for \((v_{k \ell ,i j})=\varvec{V}_{k \ell }\), which is defined in (6), and \((\sigma _{ij})=\varvec{{\varSigma }}\) if k, \(\ell \), \(\alpha \), \(\beta \), \(\gamma \) and \(\delta \) are all different. Adding up over the \(\mathrm {P}_{N,6}\) such sextuples and dividing \(\mathrm {P}_{N,6}\) gives an unbiased estimate of \(\sigma _{ij}^3\). By adding up it over (ij), we obtain V. \(\square \)

Proof of Theorem 2

In this section, we give a proof of Theorem 2. Before proving it, we prepare three lemmas. The first two lemmas (Lemma 4 and Lemma 5) treat formula about multi-sum, and the last lemma (Lemma 6) treats the uniformly boundedness on \(p \in {\mathbb {N}}\) for the expectation, which is used to prove Theorem 2. Since proofs of Lemma 4 and Lemma 5 are tedious but simple, we skipped here.

Lemma 4

The following equations hold:

figure g

Lemma 5

The following equations hold:

figure h

Lemma 6

Let

$$\begin{aligned} Q_{k\ell \alpha \beta \gamma \delta } =\sum _{i=1}^p \sum _{j=1}^p \varvec{a}_i'\varvec{z}_k \varvec{z}_{\ell } \varvec{a}_j \varvec{a}_i \varvec{z}_{\alpha } \varvec{z}_{\beta } \varvec{a}_j \varvec{a}_i' \varvec{z}_{\gamma } \varvec{z}_{\delta }' \varvec{a}_j, \end{aligned}$$

where \(\varvec{{\varSigma }}^{1/2}=\varvec{A}=(\varvec{a}_1,\ldots ,\varvec{a}_p)'\), and \(\varvec{z}_k\), \(\varvec{z}_{\ell }\), \(\varvec{z}_{\alpha }\), \(\varvec{z}_{\beta }\), \(\varvec{z}_{\gamma }\) and \(\varvec{z}_{\delta }\) are i.i.d. as \(N_p(\varvec{0},\varvec{I}_p)\). Then, there exist \(M>0\), which does not depend on p, such that

$$\begin{aligned}&\sup _{p \in {\mathbb {N}}} \left[ E[Q_{112233}^2] \Bigg / \max \left\{ \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2, \left| \sum _{i=1}^p \sum _{j=1}^p \sum _{s=1}^p \sum _{t=1}^p \sigma _{ij} \sigma _{st} \sigma _{is} \sigma _{jt} \sigma _{it} \sigma _{js} \right| \right\} \right] < M, \end{aligned}$$
(18)
$$\begin{aligned}&\sup _{p \in {\mathbb {N}}} \left[ E[Q_{112234}^2] \Bigg / \max \left\{ \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2, \left| \sum _{i=1}^p \sum _{j=1}^p \sum _{s=1}^p \sum _{t=1}^p \sigma _{ij} \sigma _{st} \sigma _{is} \sigma _{jt} \sigma _{it} \sigma _{js} \right| \right\} \right] <M, \end{aligned}$$
(19)
$$\begin{aligned}&\sup _{p \in {\mathbb {N}}} \left[ E[Q_{112345}^2] \bigg / \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2 \right] <M, \end{aligned}$$
(20)
$$\begin{aligned}&\sup _{p \in {\mathbb {N}}} \left[ E[Q_{123456}^2] \bigg / \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2 \right] <M. \end{aligned}$$
(21)

In addition, under the assumption \(\mathrm {C}\),

$$\begin{aligned} \sup _{p \in {\mathbb {N}}} \left[ E[Q_{112233}^2] \bigg / \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2 \right]< M, \quad \sup _{p \in {\mathbb {N}}} \left[ E[Q_{112234}^2] \bigg / \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2 \right] <M. \end{aligned}$$

Proof

Since (19), (20) and (21) can be proved by using the same way to show (18), we only show (18), and omit other three here. It can be expressed that

figure i
figure j

where the second equality follows from Lemma 1, the third equality from bottom follows from Lemma 4 and the second equality from bottom follows from Lemma 5. Since \(\odot ^2 \varvec{{\varSigma }}\) is positive definite, we have

$$\begin{aligned} {\mathrm{tr}}\{(\odot ^2 \varvec{{\varSigma }})\varvec{{\varSigma }}\}^2 \le \{ {\mathrm{tr}}(\odot ^2 \varvec{{\varSigma }})\varvec{{\varSigma }} \}^2, \end{aligned}$$

where the right-hand side of the inequality can be written as \(\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2\). From this result, it is found that

$$\begin{aligned} \sup _{p \in {\mathbb {N}}} \left[ E[Q_{112233}^2] \Bigg / \max \left\{ \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2, \left| \sum _{i=1}^p \sum _{j=1}^p \sum _{s=1}^p \sum _{t=1}^p \sigma _{ij} \sigma _{st} \sigma _{is} \sigma _{jt} \sigma _{it} \sigma _{js} \right| \right\} \right] < 27. \end{aligned}$$

Note that

$$\begin{aligned} \sigma _{ij} \sigma _{st} \sigma _{is} \sigma _{jt} \sigma _{it} \sigma _{js}&\le \sigma _{ij} \sigma _{st} (\sqrt{|\sigma _{is}|})^2 (\sqrt{|\sigma _{jt}|})^2 \sigma _{js} \sigma _{it}\\&\le \frac{ \sigma _{ij}^2 \sigma _{st}^2 |\sigma _{is}| |\sigma _{jt}| + \sigma _{sj}^2 \sigma _{ti}^2 |\sigma _{is}| |\sigma _{jt}| }{ 2 }, \end{aligned}$$

From this inequality, we have

$$\begin{aligned} \left| \sum _{i=1}^p \sum _{j=1}^p \sum _{s=1}^p \sum _{t=1}^p \sigma _{ij} \sigma _{st} \sigma _{is} \sigma _{jt} \sigma _{it} \sigma _{js} \right|&\le \sum _{i=1}^p \sum _{j=1}^p \sum _{s=1}^p \sum _{t=1}^p |\sigma _{ij} \sigma _{st} \sigma _{is} \sigma _{jt} \sigma _{it} \sigma _{js}|\\&\le \frac{1}{2} \left[ {\mathrm{tr}}\{ (\odot ^2 \varvec{{\varSigma }}_+)\varvec{{\varSigma }}_+\}^2 + {\mathrm{tr}}\{ (\odot ^2 \varvec{{\varSigma }}_+)\varvec{{\varSigma }}_+\}^2 \right] \\&\le \left[ \varvec{1}_p' (\odot ^3 \varvec{{\varSigma }}_+) \varvec{1}_p \right] ^2. \end{aligned}$$

Hence under the assumption \(\mathrm {C3}\), there exist \(M>0\), which does not depend on p, such that

$$\begin{aligned} \sup _{p \in {\mathbb {N}}} \left[ \left| \sum _{i=1}^p \sum _{j=1}^p \sum _{s=1}^p \sum _{t=1}^p \sigma _{ij} \sigma _{st} \sigma _{is} \sigma _{jt} \sigma _{it} \sigma _{js} \right| \Bigg / \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2 \right] <M, \end{aligned}$$

and so

$$\begin{aligned} \sup _{p \in {\mathbb {N}}} \left[ E[Q_{112233}^2] \Bigg / \{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2 \right] <M. \end{aligned}$$

\(\square \)

Proof of Theorem 2

Since V is unbiased estimator of \(\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\), it is sufficient to show that

$$\begin{aligned} \sup _{p \in {\mathbb {N}}} \mathrm {Var}(V/\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p) \rightarrow 0 \end{aligned}$$
(22)

as \(N \rightarrow \infty \). Since V is invariant under location shift, without loss of generality, we may assume that \(\varvec{\mu }=\varvec{0}\). Each of A, B, C and D in (16) can be written as

figure k

From (16), we can express that

$$\begin{aligned}&\left( V/\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p-1\right) ^2\\&\quad =\left[ \left\{ \frac{1}{\mathrm {P}_{N,3}} \frac{A}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} -1 \right\} \right. \\&\qquad \left. -\frac{3}{\mathrm {P}_{N,4}} \frac{B}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} +\frac{3}{\mathrm {P}_{N,5}} \frac{C}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} -\frac{1}{\mathrm {P}_{N,6}} \frac{D}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right] ^2 \\&\quad \le 4 \left[ \left\{ \frac{1}{\mathrm {P}_{N,3}} \frac{A}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} -1 \right\} ^2 +\left( \frac{3}{\mathrm {P}_{N,4}}\right) ^2 \left( \frac{B}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p}\right) ^2\right. \\&\qquad \left. +\left( \frac{3}{\mathrm {P}_{N,5}}\right) ^2 \left( \frac{C}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p}\right) ^2 +\left( \frac{1}{\mathrm {P}_{N,6}}\right) ^2 \left( \frac{D}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p}\right) ^2 \right] , \end{aligned}$$

where the inequality follows from Jensen inequality. Thus,

$$\begin{aligned}&\mathrm {Var}\left( \frac{ V }{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right) \nonumber \\&\quad \le 4 \left[ E \left[ \left\{ \frac{1}{\mathrm {P}_{N,3}} \frac{A}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} -1 \right\} ^2 \right] +\left( \frac{3}{\mathrm {P}_{N,4}}\right) ^2 E \left[ \left( \frac{B}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p}\right) ^2 \right] \right. \nonumber \\&\qquad \left. +\,\left( \frac{3}{\mathrm {P}_{N,5}}\right) ^2 E \left[ \left( \frac{C}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p}\right) ^2 \right] +\left( \frac{1}{\mathrm {P}_{N,6}}\right) ^2 E \left[ \left( \frac{D}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p}\right) ^2 \right] \right] . \end{aligned}$$
(23)

For the first term in the right-hand side of the inequality (23), expanding \(\{.\}^2\), and excluding the term whose expectation becomes 0, we have

(24)

where

$$\begin{aligned}&E[A_1] = \frac{E[Q_{112233}^2]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \quad E[A_2] = \frac{E[Q_{112233}Q_{112244}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[A_3] = \frac{E[Q_{112233}Q_{114455}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}. \end{aligned}$$

Using the same calculation method, the second-fourth terms in the right-hand side of the inequality (23) can be written as

$$\begin{aligned}&E \left[ \left\{ \frac{1}{\mathrm {P}_{N,4}} \frac{B}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right\} ^2 \right] \nonumber \\&\quad = \left( \frac{1}{ \mathrm {P}_{N,4} } \right) ^2 \left[ 2 \mathrm {P}_{N,4} E[B_1] + 2 \mathrm {P}_{N,4} E[B_2] + 4 \mathrm {P}_{N,5} E[B_3] \right. \nonumber \\&\qquad \left. +\, 4 \mathrm {P}_{N,5} E[B_4] + 2 \mathrm {P}_{N,6} E[B_5] + 2 \mathrm {P}_{N,6} E[B_6] \right] , \end{aligned}$$
(25)
$$\begin{aligned}&E \left[ \left\{ \frac{1}{\mathrm {P}_{N,5}} \frac{C}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right\} ^2 \right] \nonumber \\&\quad = \left( \frac{1}{ \mathrm {P}_{N,5} } \right) ^2 \left[ 4 \mathrm {P}_{N,5} E[C_1] + 8 \mathrm {P}_{N,5} E[C_2] + 8 \mathrm {P}_{N,5} E[C_3] \right. \nonumber \\&\qquad +\, 4 \mathrm {P}_{N,5} E[C_4] + 4 \mathrm {P}_{N,6} E[C_5] + 8 \mathrm {P}_{N,6} E[C_6] + 8 \mathrm {P}_{N,6} E[C_7] \nonumber \\&\qquad \left. +\, 4 \mathrm {P}_{N,6} E[C_8]\right] , \end{aligned}$$
(26)
$$\begin{aligned}&E \left[ \left\{ \frac{1}{\mathrm {P}_{N,6}} \frac{D}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right\} ^2 \right] \nonumber \\&\quad = \left( \frac{1}{ \mathrm {P}_{N,6} } \right) ^2 \left[ 36 \mathrm {P}_{N,6} E[D_1] + 324 \mathrm {P}_{N,6} E[D_2] + 324 \mathrm {P}_{N,6} E[D_3] \right. \nonumber \\&\qquad \left. +\, 36 \mathrm {P}_{N,6} E[D_4] \right] , \end{aligned}$$
(27)

where

$$\begin{aligned}&E[B_1] = \frac{E[Q_{112234}^2]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \quad E[B_2] = \frac{E[Q_{112234}Q_{112243}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[B_3] = \frac{E[Q_{112234}Q_{115534}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[B_4] = \frac{E[Q_{112234}Q_{115543}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \quad E[B_5] = \frac{E[Q_{112234}Q_{556634}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[B_6] = \frac{E[Q_{112234}Q_{556643}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[C_1] = \frac{E[Q_{112345}^2]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \quad E[C_2] = \frac{E[Q_{112345}Q_{112354}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[C_3] = \frac{E[Q_{112345}Q_{112435}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[C_4] = \frac{E[Q_{112345}Q_{113254}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \quad E[C_5] = \frac{E[Q_{112345}Q_{662345}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[C_6] = \frac{E[Q_{112345}Q_{662354}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[C_7] = \frac{E[Q_{112345}Q_{662435}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \quad E[C_8] = \frac{E[Q_{112345}Q_{663254}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[D_1] = \frac{E[Q_{123456}^2]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \quad E[D_2] = \frac{E[Q_{123456}Q_{123465}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[D_3] = \frac{E[Q_{123456}Q_{124365}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}, \\&E[D_4] = \frac{E[Q_{123456}Q_{214365}]}{\{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p\}^2}. \end{aligned}$$

From Lemma 6, there exist \(M>0\), which does not depend on p, such that

$$\begin{aligned} \sup _{p \in {\mathbb {N}}} E[A_1]< M, \quad \sup _{p \in {\mathbb {N}}} E[B_1]< M, \quad \sup _{p \in {\mathbb {N}}} E[C_1]< M, \quad \sup _{p \in {\mathbb {N}}} E[D_1] < M. \end{aligned}$$

It follows from Cauchy–Schwarz inequality that

$$\begin{aligned}&\left| E[A_j]\right| \le E[A_1] \qquad (j=2,3,4),\\&\left| E[B_j]\right| \le E[B_1] \qquad (j=2,\ldots ,6),\\&\left| E[C_j]\right| \le E[C_1] \qquad (j=2,\ldots ,8),\\&\left| E[D_j]\right| \le E[D_1] \qquad (j=2,3,4). \\ \end{aligned}$$

From them, we find that there exist \(M>0\), which does not depend on p, such that

$$\begin{aligned}&\sup _{p \in {\mathbb {N}}} E[|A_j|]< M \qquad (j=2,3,4),\\&\sup _{p \in {\mathbb {N}}} E[|B_j|]< M \qquad (j=2,\ldots ,6),\\&\sup _{p \in {\mathbb {N}}} E[|C_j|]< M \qquad (j=2,\ldots ,8), \\&\sup _{p \in {\mathbb {N}}} E[|D_j|] < M \qquad (j=2,3,4). \end{aligned}$$

Combining these results with (24), (25), (26) and (27), it is found that

$$\begin{aligned}&\sup _{p \in {\mathbb {N}}} E \left[ \left\{ \frac{1}{\mathrm {P}_{N,3}} \frac{A}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} -1 \right\} ^2 \right] =O(N^{-1}), \\&\sup _{p \in {\mathbb {N}}} E \left[ \left\{ \frac{1}{\mathrm {P}_{N,4}} \frac{B}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right\} ^2 \right] =O(N^{-2}), \\&\sup _{p \in {\mathbb {N}}} E \left[ \left\{ \frac{1}{\mathrm {P}_{N,5}} \frac{C}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right\} ^2 \right] =O(N^{-4}), \\&\sup _{p \in {\mathbb {N}}} E \left[ \left\{ \frac{1}{\mathrm {P}_{N,6}} \frac{C}{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right\} ^2 \right] =O(N^{-6}), \\ \end{aligned}$$

and so

$$\begin{aligned} \sup _{p \in {\mathbb {N}}} \mathrm {Var}\left( \frac{ V }{\varvec{1}_p'(\odot ^3 \varvec{{\varSigma }})\varvec{1}_p} \right) =O(N^{-1}), \end{aligned}$$

which converges to 0 as \(N \rightarrow \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, T., Himeno, T. Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality. Comput Stat 34, 911–941 (2019). https://doi.org/10.1007/s00180-018-00865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-00865-9

Keywords

Navigation