Skip to main content
Log in

Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we developed a sparse Bayesian variable selection in kernel probit model for high-dimensional data classification. Particularly we assigned a correlation prior distribution on the model size and a sparse prior distribution on the regression parameters. MCMC-based computation algorithms are outlined to generate samples from the posterior distributions. Simulation and real data studies show that in terms of the accuracy of variable selection and classification, our proposed method performs better than the other five Bayesian methods without the correlation term in the prior or those involving only one shrinkage parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert J, Chib S (1993) Bayesian analysis of binary and polychotomous response data. J Am Stat Assoc 88:669–679

    Article  MathSciNet  Google Scholar 

  • Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96:6745–6750

    Article  Google Scholar 

  • Araki T, Ikeda K, Akaho S (2015) An efficient sampling algorithm with adaptations for Bayesian variable selection. Neural Netw 61:22–31

    Article  Google Scholar 

  • Armagan A, Dunson DB, Lee J (2013) Generalized double Pareto shrinkage. Statistica Sinica 3(1):119–143

    MathSciNet  MATH  Google Scholar 

  • Ben-Dor A et al (2000) Tissue classification with gene expression profiles. J Comput Biol 7:559–583

    Article  Google Scholar 

  • Bradley P, Mangasarian O (1998) Feature selection via concave minimization and support vector machines. In: Proceedings of the 15th international conference on machine learning, pp 82–90

  • Chakraborty S, Mallick BK, Ghosh M (2013) Bayesian hierarchical kernel machines for nonlinear regression and classification. In: Damien P, Dellaportas P, Polson NG, Stephens DA (eds) Bayesian theory and applications (A tribute to Sir Adrian Smith). Oxford University Press, Oxford, pp 50–69

    Chapter  Google Scholar 

  • Chhikara R, Folks L (1989) The inverse gaussian distribution: theory, methodology and applications. Marcel Dekker, New York

    MATH  Google Scholar 

  • Crawford L, Wood KC, Zhou X, Mukherjee S (2017) Bayesian approximate kernel regression with variable selection. J Am Stat Assoc 113:1710–1721. https://doi.org/10.1080/01621459.2017.1361830

    Article  MathSciNet  MATH  Google Scholar 

  • Dettling M (2004) BagBoosting for tumor classification with gene expression data. Bioinformatics 20:3583–3593

    Article  Google Scholar 

  • Devroye L (1986) Non-uniform random variate generation. Springer, New York

    Book  Google Scholar 

  • Dougherty ER (2001) Small sample issues for microarray-based classification. Comp Funct Genom 2:28–34

    Article  Google Scholar 

  • George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88:881–889

    Article  Google Scholar 

  • Gelfand A, Smith AFM (1990) Sampling based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409

    Article  MathSciNet  Google Scholar 

  • Golub TR et al (1999) Molecular classification of cancer:class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V et al (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  • Lamnisos D, Grin JE, Mark Steel FJ (2009) Transdimensional sampling algorithms for Bayesian variable selection in classification problems with many more variables than observations. J Comput Gr Stat 18:592–612

    Article  MathSciNet  Google Scholar 

  • Lee KE et al (2003) Gene selection: a Bayesian variable selection approach. Bioinformatics 19:90–97

    Article  Google Scholar 

  • Mallick BK, Ghosh D, Ghosh M (2005) Bayesian classification of tumors using gene expression data. J R Stat Soc B 67:219–232

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Notterman D et al (2001) Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotidearrays. Cancer Res 61:3124–3130

    Google Scholar 

  • Panagiotelisa A, Smith M (2008) Bayesian identification, selection and estimation of semiparametric functions in high dimensional additive models. J Econom 143:291–316

    Article  MathSciNet  Google Scholar 

  • Park K, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103:681–686

    Article  MathSciNet  Google Scholar 

  • Shailubhai K et al (2000) Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151–5157

    Google Scholar 

  • Tolosi L, Lengauer T (2011) Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics 27:1986–1994

    Article  Google Scholar 

  • Troyanskaya OG et al (2002) Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics 18:1454–1461

    Article  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Wahba G (1990) Spline models for observational data. SIAM, Philadelphia

    Book  Google Scholar 

  • Wang L, Zhu J, Zou H (2008) Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics 24:412–419

    Article  Google Scholar 

  • Yang AJ, Xiang J, Yang HQ, Lin JG (2018a) Sparse Bayesian variable selection in probit model for forecasting U.S. recessions using a large set of predictors. Comput Econ 51:1123–1138

    Article  Google Scholar 

  • Yang AJ, Jiang XJ, Shu LJ, Liu PF (2018b) Sparse bayesian kernel multinomial probit regression model for high-dimensional data classification. Commun Stat-Theory Methods 48:165–176. https://doi.org/10.1080/03610926.2018.1463385

    Article  MathSciNet  Google Scholar 

  • Yang AJ, Xiang J, Shu LJ, Yang HQ (2018c) Sparse bayesian variable selection with correlation prior for forecasting macroeconomic variable using highly correlated predictors. Comput Econ 51:323–338

    Article  Google Scholar 

  • Yuan M, Lin Y (2005) Efficient empirical Bayes variable selection and estimation in linear models. J Am Stat Assoc 472:1215–1225

    Article  MathSciNet  Google Scholar 

  • Zhang Z, Dai G, Jordan MI (2011) Bayesian generalized kernel mixed models. J Mach Learn Res 12:111–139

    MathSciNet  MATH  Google Scholar 

  • Zhou X, Wang X, Wong S (2004a) A Bayesian approach to nonlinear probit gene selection and classification. J Frankl Inst 341:137–156

    Article  MathSciNet  Google Scholar 

  • Zhou X, Liu K, Wong S (2004b) Cancer classification and prediction using logistic regression with Bayesian gene selection. J Biomed Inf 37:249–259

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Humanities and Social Science Foundation of Ministry of Education of China (18YJC910001), the Natural Science Foundation of China (11501294,11501167,11571073), the University Philosophy and Social Science Research Project of Jiangsu Province (2018SJA0130) and the Jiangsu Qinglan Project(2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Tian, Y., Li, Y. et al. Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data. Comput Stat 35, 245–258 (2020). https://doi.org/10.1007/s00180-019-00917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00917-8

Keywords

Navigation