Skip to main content
Log in

An efficient dimension reduction for the Gaussian process emulation of two nested codes with functional outputs

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we first propose an efficient method for the dimension reduction of the functional input of a code with functional output. It is based on the approximation of the output by a model which is linear with respect to the functional input. This approximation has a sparse structure, whose parameters can be accurately estimated from a small set of observations of the code. The Gaussian predictor based on this projection basis is significantly more accurate than the one based on a projection obtained with Partial Least Squares. Secondly, the surrogate modeling of two nested codes with functional outputs is considered. In such a case, the functional output of the first code is one of the inputs of the second code. The Gaussian process regression of the second code is performed using the proposed dimension reduction. A Gaussian predictor of the nested code is obtained by composing the predictors of the two codes and linearizing this composition. Moreover, two sequential design criteria are proposed. Since we aim at performing a sensitivity analysis, these criteria are based on a minimization of the prediction variance. Moreover, one of the criteria enables to choose, if it is possible, which of the two codes to run. Thus, the computational budget is optimally allocated between the two codes and the prediction error is substantially reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baker CTH (1977) The numerical treatment of integral equations. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Bates RA, Buck RJ, Riccomagno E, Wynn HP (1996) Experimental design and observation for large systems. J Roy Stat Soc Ser B 58(1):77–94

    MathSciNet  MATH  Google Scholar 

  • Bect J, Ginsbourger D, Li L, Picheny V, Vasquez E (2012) Sequential design of computer experiments for the estimation of a probability of failure. Stat Comput 22:773–797

    Article  MathSciNet  Google Scholar 

  • Constantine P, Dow E, Wang QQ (2014) Active Subspace methods in theory and practice: Applications to Kriging surfaces. SIAM J Sci Comput 36(4):1500–1524

    Article  MathSciNet  Google Scholar 

  • Conti S, O’Hagan A (2010) Bayesian emulation of complex multi-output and dynamic computer models. J Stat Plan Inference 140:640–651

    Article  MathSciNet  Google Scholar 

  • Conti S, Gosling J, Oakley J, O’Hagan A (2009) Gaussian process emulation of dynamic computer codes. Biometrika 96(3):663–676

    Article  MathSciNet  Google Scholar 

  • Cornford D, Nabney IT, Williams CKI (2002) Modelling frontal discontinuities in wind fields. J Nonparameter Stat 14:43–58

    Article  MathSciNet  Google Scholar 

  • Defaux G, Evrard P (2014) Probabilistic analysis of a containment vessel subjected to dynamic pressure loading using surrogate models. In: Safety, reliability, risk and life-cycle performance of structures and infrastructures. CRC Press, pp 3203–3210, https://doi.org/10.1201/b16387-463

  • Eckart G, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1:211–218

    Article  Google Scholar 

  • Efroymson M (1960) Mathematical models for digital computers, vol 1, Wiley, chap Multiple regression analysis, pp 191–203

  • Fricker T, Oakley J, Urban N (2013) Multivariate Gaussian process emulators with nonseparable covariance structures. Technometrics 55(1):47–56

    Article  MathSciNet  Google Scholar 

  • Ginsbourger D, Le Riche R, Carraro L (2010) Computational intelligence in expensive optimization problems, adaptation Learning and Optimization, vol 2, chap Kriging is well-suited to parallelize optimization, Springer Berlin, pp 131–162

  • Higdon D, Gattiker J, Williams B, Rightley M (2008) Computer model calibration using high-dimensional output. J Am Stat Assoc 103(482):570–583

    Article  MathSciNet  Google Scholar 

  • Höskuldsson A (1988) PLS regression methods. J Chemom 2(3):211–228

    Article  Google Scholar 

  • Hung Y, Joseph V, Melkote S (2015) Analysis of computer experiments with functional response. Technometrics 5(1):35–44

    Article  MathSciNet  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. Biometrika 13:455–492

    MathSciNet  MATH  Google Scholar 

  • Marque-Pucheu S, Perrin G, Garnier J (2018) Efficient sequential experimental design for surrogate modeling of nested codes. ESAIM Probab Stat 23:245–270

    Article  MathSciNet  Google Scholar 

  • Nanty S, Helbert C, Marrel A, Pérot N, Prieur C (2017) Uncertainty quantification for functional dependent random variables. Comput Stat 32(2):559–583

    Article  MathSciNet  Google Scholar 

  • Perrin G (in press) Adaptive calibration of a computer code with time-series output. Reliab Eng Syst Saf

  • Picheny V, Ginsbourger D, Roustant O, Haftka R, Kim NH (2010) Adaptive designs of experiments for accurate approximation of a target region. J Mech Des 132(7):071008–071008–9

    Article  Google Scholar 

  • Pinkus A (2015) Ridge functions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pinski F, Simpson G, Stuart A, Weber H (2015) Kullback–Leibler approximation for probability measures on infinite dimensional spaces. SIAM J Math Anal 47(6):4091–4122

    Article  MathSciNet  Google Scholar 

  • Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Rougier J (2008) Efficient emulators for multivariate deterministic functions. J Comput Graph Stat 17(4):827–843

    Article  MathSciNet  Google Scholar 

  • Russi T (2010) Uncertainty quantification with experimental data and complex system models. PhD thesis, UC Berkeley

  • Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423

    Article  MathSciNet  Google Scholar 

  • Santner T, Williams B, Notz W (2003) The design and analysis of computer experiments. Springer, New York

    Book  Google Scholar 

  • Sobol I (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 1:407–414

    MathSciNet  MATH  Google Scholar 

  • Sobol M (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Article  MathSciNet  Google Scholar 

  • Williams B, Higdony D, Gattiker J, Moore L, McKay M, Keller-McNulty S (2006) Combining experimental data and computer simulations, with an application to flyer plate experiments. Bayesian Anal 1(4):765–792

    Article  MathSciNet  Google Scholar 

  • Wold H (1966) Estimation of principal components and related models by iterative least squares. Academic Press, New York

    MATH  Google Scholar 

  • Zahm O, Constantine P, Prieur C, Marzouk Y (2018) Gradient-based dimension reduction of multivariate vector-valued functions. HAL preprint: hal-180107922

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Marque-Pucheu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

We aim at finding a m-rank matrix \(\varvec{Z}^*\) such that:

$$\begin{aligned} \varvec{Z}^*=\underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \sum \limits _{i=1}^{N_x} \left\| \varvec{Ax}_t^{(i)}-\varvec{AZx}_t^{(i)} \right\| ^2, \end{aligned}$$

where \(\varvec{Z}\) is a m-rank matrix and \(\varvec{x}_t^{(i)}\) denotes the i-th observation of the input.

The previous equation can be rewritten:

$$\begin{aligned} \varvec{Z}^*= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \sum \limits _{i=1}^{N_x} \left\| \varvec{Ax}_t^{(i)}-\varvec{AZx}_t^{(i)} \right\| ^2 \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \text {Tr}\left( \left( \varvec{AX}_t-\varvec{AZX}_t \right) ^T\left( \varvec{AX}_t-\varvec{AZX}_t \right) \right) \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \text {Tr}\left( \left( \varvec{AZ}^c\varvec{X}_t \right) ^T\left( \varvec{AZ}^c\varvec{X}_t \right) \right) \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \text {Tr}\left( \varvec{X}_t^T\left( \varvec{Z}^c \right) ^T\varvec{A}^T \varvec{AZ}^c\varvec{X}_t \right) \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \text {Tr}\left( \left( \varvec{Z}^c \right) ^T\varvec{A}^T \varvec{AZ}^c\varvec{X}_t\varvec{X}_t^T \right) \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \text {Tr}\left( \left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}}\left( \varvec{Z}^c \right) ^T\varvec{A}^T \varvec{AZ}^c\left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}} \right) \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \text {Tr}\left( \left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}}\left( \varvec{Z}^c \right) ^T\left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \varvec{Z}^c\left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}} \right) \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \text {Tr}\left( \left( \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \varvec{Z}^c\left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}} \right) ^T \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \varvec{Z}^c\left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}} \right) \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \left\| \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \varvec{Z}^c\left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}} \right\| ^2_F \\= & {} \underset{\scriptstyle \varvec{Z} \in \mathcal {M}_{N_t\times N_t}}{{\text {argmin}}}\ \left\| \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}} - \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \varvec{Z}\left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}} \right\| ^2_F. \end{aligned}$$

In Eckart and Young (1936), it is shown that the matrix \(\varvec{Q}_m\) of rank m which minimizes \(\left\| \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}} - \varvec{Q}_m \right\| ^2_F\) is given by the m first singular-values of the singular-value decomposition of \( \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}}\). If we denote by \(\varvec{U D V}^T\) the singular-value decomposition of \(\left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}}\left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}}\), with \(\varvec{U}\) and \(\varvec{V}\) gathering the singular vectors associated with the singular values sorted in ascending order, then we have \(\varvec{Q}_m=\varvec{U}_m \varvec{D}_m \varvec{V}_m^T\) where \(\varvec{U}_m\) and \(\varvec{V}_m\) gather the m first columns of \(\varvec{U}\) and \(\varvec{V}\) and \(\varvec{D}_m\) contains the m first lines and columns of \(\varvec{D}\). It can therefore be inferred that:

$$\begin{aligned} \left( \varvec{A}^T\varvec{A} \right) ^{\frac{1}{2}} \varvec{Z}^*\left( \varvec{X}_t\varvec{X}_t^T \right) ^{\frac{1}{2}}=\varvec{U}_m \varvec{D}_m \varvec{V}_m^T. \end{aligned}$$

Hence, we have:

$$\begin{aligned} \varvec{Z}^*=\left( \varvec{A}^T\varvec{A} \right) ^{-\frac{1}{2}}\varvec{U}_m \varvec{D}_m \varvec{V}_m^T\left( \varvec{X}_t\varvec{X}_t^T \right) ^{-\frac{1}{2}}. \end{aligned}$$

1.2 Proof of Lemma 1

1.2.1 First equation

From Eq. (35), it can be inferred that:

$$\begin{aligned}&\mathbb {E}\left[ \varvec{M}_i \vert \lbrace \varvec{Y}_{i}^{\text {obs}},\varvec{Y}_i\left( \varvec{\bar{x}}_{i}^* \right) = \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \rbrace , \varvec{R}_{t_i}, C_i \right] = \varvec{Y}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T \\&\qquad \left( \varvec{H}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T \right) ^{-1}, \end{aligned}$$

where

$$\begin{aligned} \begin{array}{rl} \varvec{Y}_i^{\text {obs,new}} &{}=\left( \varvec{Y}_i^\text {obs}\ ,\ \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \right) , \\ \varvec{H}_i^{\text {obs,new}} &{}=\left( \varvec{H}_i^\text {obs}\ ,\ \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) , \end{array} \end{aligned}$$
(73)

and

$$\begin{aligned} \varvec{R}_i^{\text {obs,new}}= \left( \begin{array}{cc} \varvec{R}_i^{\text {obs,new}} &{} C\left( \overline{\varvec{X}}_{i}^{\text {obs}},\varvec{\bar{x}}_{i}^* \right) \\ C\left( \varvec{\bar{x}}_{i}^*,\overline{\varvec{X}}_{i}^{\text {obs}} \right) &{} 1 \end{array} \right) . \end{aligned}$$

Using the Schur complement formulas, one gets:

$$\begin{aligned} \left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}= \left( \begin{array}{cc} \varvec{Q}_{11}&{} \varvec{Q}_{12} \\ \varvec{Q}_{21} &{} \varvec{Q}_{22} \end{array} \right) , \end{aligned}$$
(74)

where

$$\begin{aligned} \begin{array}{rl} \varvec{Q}_{11} &{}= \left( \varvec{R}_i^\text {obs} \right) ^{-1}+\varvec{Q}_{22}\left( \varvec{R}_i^\text {obs} \right) ^{-1}C\left( \overline{\varvec{X}}_{i}^{\text {obs}},\varvec{\bar{x}}_{i}^* \right) C\left( \varvec{\bar{x}}_{i}^*,\overline{\varvec{X}}_{i}^{\text {obs}} \right) \left( \varvec{R}_i^\text {obs} \right) ^{-1}\\ &{} =\left( \varvec{R}_i^\text {obs} \right) ^{-1}+\varvec{Q}_{22}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T, \\ \varvec{Q}_{12} &{} =-\varvec{Q}_{22}\left( \varvec{R}_i^\text {obs} \right) ^{-1}C\left( \overline{\varvec{X}}_{i}^{\text {obs}},\varvec{\bar{x}}_{i}^* \right) =-\varvec{Q}_{22}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) , \\ \varvec{Q}_{21} &{} =-\varvec{Q}_{22}C\left( \varvec{\bar{x}}_{i}^*,\overline{\varvec{X}}_{i}^{\text {obs}} \right) \left( \varvec{R}_i^\text {obs} \right) ^{-1}=-\varvec{Q}_{22}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T, \end{array} \end{aligned}$$
(75)

\(\varvec{Q}_{22}\in \mathbb {R}\), and:

$$\begin{aligned} \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) =\left( \varvec{R}_i^\text {obs} \right) ^{-1}C\left( \overline{\varvec{X}}_{i}^{\text {obs}},\varvec{\bar{x}}_{i}^* \right) . \end{aligned}$$
(76)

From the previous equations, one has:

$$\begin{aligned}&\varvec{H}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T\nonumber \\&\quad = \varvec{H}_i^\text {obs}\varvec{Q}_{11}\left( \varvec{H}_i^\text {obs} \right) ^T+ \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{Q}_{21}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{H}_i^\text {obs}\varvec{Q}_{12}\varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\nonumber \\&\qquad +\, \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{Q}_{22}\varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\nonumber \\&\quad =\varvec{H}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Q}_{22}\left( \varvec{H}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\left( \varvec{H}_i^\text {obs} \right) ^T \right. \nonumber \\&\qquad \left. -\varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\left( \varvec{H}_i^\text {obs} \right) ^T \right. \nonumber \\&\qquad \left. -\varvec{H}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T+ \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\right) \nonumber \\&\quad =\varvec{H}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Q}_{22}\left( \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) \right. \nonumber \\&\left. \qquad -\varvec{H}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) \left( \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) -\varvec{H}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) ^T\nonumber \\&\quad =\varvec{H}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Q}_{22}\varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T, \end{aligned}$$
(77)

where \(u_{i}\) is defined by Eq. (34). In the same way, one has:

$$\begin{aligned}&\varvec{Y}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T\nonumber \\&\quad = \varvec{Y}_i^\text {obs}\varvec{Q}_{11}\left( \varvec{H}_i^\text {obs} \right) ^T+ \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{Q}_{21}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Y}_i^\text {obs}\varvec{Q}_{12}\varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\nonumber \\&\qquad + \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{Q}_{22}\varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T \nonumber \\&\quad =\varvec{Y}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Q}_{22}\left( \varvec{Y}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\left( \varvec{H}_i^\text {obs} \right) ^T\right. \nonumber \\&\qquad \left. - \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\left( \varvec{H}_i^\text {obs} \right) ^T \right. \nonumber \\&\qquad \left. -\varvec{Y}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T+ \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\right) \nonumber \\&\quad =\varvec{Y}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T \nonumber \\&\qquad +\varvec{Q}_{22}\left( \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) -\varvec{Y}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) \left( \varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) -\left( \varvec{H}_i^\text {obs} \right) \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) ^T \nonumber \\&\quad =\varvec{Y}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Q}_{22}\left( \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) -\varvec{Y}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) \varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T. \end{aligned}$$

From Eqs. (34) and (76), it can be inferred that:

$$\begin{aligned} \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) - \varvec{Y}_i^\text {obs}\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) =\widehat{\varvec{M}}_i\varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) , \end{aligned}$$

where \(\widehat{\varvec{M}}_i=\mathbb {E}\left[ \varvec{M}_i \vert \varvec{Y}_{i}^{\text {obs}}, C_i \right] \) is defined by Eq. (35).

Therefore, one has:

$$\begin{aligned}&\varvec{Y}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T\\&\quad =\varvec{Y}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Q}_{22}\widehat{\varvec{M}}_i\varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T. \end{aligned}$$

From Eqs. (35) and (77) it can be inferred that:

$$\begin{aligned}&\varvec{Y}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T\nonumber \\&\quad =\widehat{\varvec{M}}_i\varvec{H}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Q}_{22}\widehat{\varvec{M}}_i\varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T\nonumber \\&\quad =\widehat{\varvec{M}}_i\left( \varvec{H}_i^\text {obs}\left( \varvec{R}_i^\text {obs} \right) ^{-1}\left( \varvec{H}_i^\text {obs} \right) ^T +\varvec{Q}_{22}\varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{u}_i\left( \varvec{\bar{x}}_{i}^* \right) ^T \right) \nonumber \\&\quad =\widehat{\varvec{M}}_i\varvec{H}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T. \end{aligned}$$

Therefore, one has:

$$\begin{aligned} \varvec{Y}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T\left( \varvec{H}_i^{\text {obs,new}}\left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}\left( \varvec{H}_i^{\text {obs,new}} \right) ^T \right) ^{-1} =\widehat{\varvec{M}}_i. \end{aligned}$$

Thus, one can conclude from the previous equation and Eq.  (35) that:

$$\begin{aligned} \mathbb {E}\left[ \varvec{M}_i \vert \lbrace \varvec{Y}_{i}^{\text {obs}},\varvec{Y}_i\left( \varvec{\bar{x}}_{i}^* \right) = \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \rbrace , \varvec{R}_{t_i}, C_i \right] =\mathbb {E}\left[ \varvec{M}_i \vert \varvec{Y}_{i}^{\text {obs}}, \varvec{R}_{t_i}, C_i \right] . \end{aligned}$$

1.2.2 Second equation

From Eq. (36) it can be inferred that:

$$\begin{aligned}&\varvec{R}_{t_i}\left( \varvec{Y}_i^\text {obs},\varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \right) = \dfrac{1}{n_i+1} \left( \varvec{Y}_i^{\text {obs,new}}-\widehat{\varvec{M}}_i\varvec{H}_i^{\text {obs,new}} \right) \nonumber \\&\quad \left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1} \left( \varvec{Y}_i^{\text {obs,new}}-\widehat{\varvec{M}}_i\varvec{H}_i^{\text {obs,new}} \right) ^T. \end{aligned}$$
(78)

From Eq. (73), one has:

$$\begin{aligned} \varvec{Y}_i^{\text {obs,new}}-\widehat{\varvec{M}}_i\varvec{H}_i^{\text {obs,new}}=\left( \varvec{Y}_i^\text {obs} -\widehat{\varvec{M}}_i\varvec{H}_i^\text {obs} \ ,\ \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) -\widehat{\varvec{M}}_i\varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) . \end{aligned}$$
(79)

From Eq. (34), one gets:

$$\begin{aligned} \varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) -\widehat{\varvec{M}}_i\varvec{h}_i\left( \varvec{\bar{x}}_{i}^* \right) =\left( \varvec{Y}_i^\text {obs} -\widehat{\varvec{M}}_i\varvec{H}_i^\text {obs} \right) \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) , \end{aligned}$$

where \(\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \) is defined by Eq. (76).

Therefore, Eq. (79) becomes:

$$\begin{aligned} \varvec{Y}_i^{\text {obs,new}}-\widehat{\varvec{M}}_i\varvec{H}_i^{\text {obs,new}}= \left( \varvec{Y}_i^\text {obs} -\widehat{\varvec{M}}_i\varvec{H}_i^\text {obs} \right) \left( \varvec{I}_{n_i}\ ,\ \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) . \end{aligned}$$

Eq. (78) can thus be rewritten:

$$\begin{aligned} \varvec{R}_{t_i}\left( \varvec{Y}_i^\text {obs},\varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \right)= & {} \dfrac{1}{n_i+1} \left( \varvec{Y}_i^\text {obs} -\widehat{\varvec{M}}_i\varvec{H}_i^\text {obs} \right) \left( \varvec{I}_{n_i}\ ,\ \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) \left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1} \nonumber \\&\times \, \left( \varvec{I}_{n_i}\ ,\ \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) ^T \left( \varvec{Y}_i^\text {obs} -\widehat{\varvec{M}}_i\varvec{H}_i^\text {obs} \right) ^T. \end{aligned}$$
(80)

Besides, one has from Eqs. (74) and (75):

$$\begin{aligned} \begin{array}{rl} \left( \varvec{I}_{n_i}\ ,\ \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) \left( \varvec{R}_i^{\text {obs,new}} \right) ^{-1}= &{} \left( \varvec{I}_{n_i} \ ,\ \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) \left( \begin{array}{cc} \varvec{Q}_{11}&{} \varvec{Q}_{12} \\ \varvec{Q}_{21} &{} \varvec{Q}_{22} \end{array} \right) \\ = &{} \left( \varvec{Q}_{11}+\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{Q}_{21} \ ,\ \varvec{Q}_{12}+\varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \varvec{Q}_{22} \right) \\ = &{} \left( \left( \varvec{R}_i^\text {obs} \right) ^{-1} \ ,\ \varvec{0}_{n_i} \right) . \end{array} \end{aligned}$$

One can infer that:

$$\begin{aligned} \left( \varvec{I}_{n_i} \ ,\ \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) \left( \begin{array}{cc} \varvec{Q}_{11}&{} \varvec{Q}_{12} \\ \varvec{Q}_{21} &{} \varvec{Q}_{22} \end{array}, \right) \left( \begin{array}{c} \varvec{I}_{n_i} \\ \left( \varvec{v}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) ^T \end{array} \right) =\left( \varvec{R}_i^\text {obs} \right) ^{-1}. \end{aligned}$$

One can conclude from Eq. (80), (36) and the previous equation, that:

$$\begin{aligned} \varvec{R}_{t_i}\left( \varvec{Y}_i^\text {obs},\varvec{\mu }^c_i\left( \varvec{\bar{x}}_{i}^* \right) \right) =\dfrac{n_i}{n_i+1}\varvec{R}_{t_i}\left( \varvec{Y}_i^\text {obs} \right) . \end{aligned}$$

1.3 Proof of Proposition 2

From Eq. (39) it can be inferred that the criterion can be rewritten:

$$\begin{aligned} \varvec{\bar{x}}_{i}^{new}=\underset{\scriptstyle \varvec{\bar{x}}_{i}^* \in \overline{\mathbb {X}}_i}{{\text {argmin}}} \displaystyle \int _{\overline{\mathbb {X}}_i} \text {Tr}\left( \varvec{R}_{t_i}\left( \varvec{Y}_i^\text {obs},\varvec{y}_i\left( \varvec{\bar{x}}_{i}^* \right) \right) \right) v_i\left( \varvec{\bar{x}}_{i}\vert \varvec{\overline{X}}_{i}^{\text {obs}},\varvec{\bar{x}}_{i}^* \right) d\mu _{\overline{\mathbb {X}}_i}\left( \varvec{\bar{x}}_{i} \right) . \end{aligned}$$
(81)

Moreover, based on Lemma 1:

$$\begin{aligned} \varvec{\bar{x}}_{i}^{new}=\underset{\scriptstyle \varvec{\bar{x}}_{i}^* \in \overline{\mathbb {X}}_i}{{\text {argmin}}} \displaystyle \int _{\overline{\mathbb {X}}_i} \dfrac{n_i}{n_i+1}\text {Tr}\left( \varvec{R}_{t_i}\left( \varvec{Y}_i^\text {obs} \right) \right) v_i\left( \varvec{\bar{x}}_{i}\vert \varvec{\overline{X}}_{i}^{\text {obs}},\varvec{\bar{x}}_{i}^* \right) d\mu _{\overline{\mathbb {X}}_i}\left( \varvec{\bar{x}}_{i} \right) . \end{aligned}$$
(82)

By noting that \(\text {Tr}\left( \varvec{R}_{t_i}\left( \varvec{Y}_i^\text {obs} \right) \right) \) does not depends on \(\varvec{\bar{x}}_{i}\) and \(\varvec{\bar{x}}_{i}^*\), the criterion can finally be written:

$$\begin{aligned} \varvec{\bar{x}}_{i}^{new}=\underset{\scriptstyle \varvec{\bar{x}}_{i}^* \in \overline{\mathbb {X}}_i}{{\text {argmin}}} \displaystyle \int _{\overline{\mathbb {X}}_i} v_i\left( \varvec{\bar{x}}_{i}\vert \varvec{\overline{X}}_{i}^{\text {obs}},\varvec{\bar{x}}_{i}^* \right) d\mu _{\overline{\mathbb {X}}_i}\left( \varvec{\bar{x}}_{i} \right) . \end{aligned}$$
(83)

1.4 Proof of Proposition 3

By definition (see Eq. 47) and given the independence of \(\varvec{Y}_2\) and \(\varvec{Y}_3\), one has:

$$\begin{aligned} \varvec{Y}^c_\text {nest}\left( \varvec{x}_1,\varvec{x}_2 \right) \overset{d}{=}\varvec{\mu }_{2}^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) +\varvec{\xi }_{2}\sigma _{\varvec{x}2}^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) , \end{aligned}$$

where \(\varvec{\xi }_2\) and \(\varvec{\xi }_3\) are independent Gaussian variables, such that \(\varvec{\xi }_2 \sim \mathcal {N}\left( \varvec{0},\widehat{\varvec{R}}_{t_2} \right) \) and \(\varvec{\xi }_3 \sim \mathcal {N}\left( \varvec{0},\widehat{\varvec{R}}_{t_3} \right) \).

This implies:

$$\begin{aligned} \mathbb {E}\left[ \varvec{Y}^c_\text {nest}\left( \varvec{x}_1,\varvec{x}_2 \right) \right] =\mathbb {E}\left[ \varvec{\mu }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) \right] , \end{aligned}$$

because \(\varvec{\xi }_2\) and \(\varvec{\xi }_3\) are independent and \(\mathbb {E}\left[ \varvec{\xi }_2 \right] =\varvec{0}\).

Besides, one has:

$$\begin{aligned}&\varvec{Y}^c_\text {nest}\left( \varvec{x}_1,\varvec{x}_2 \right) \varvec{Y}^c_\text {nest}\left( \varvec{x}_1,\varvec{x}_2 \right) ^T\\&\quad =\varvec{\mu }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) \varvec{\mu }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) ^T\\&\qquad +\,\left( \varvec{\sigma }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) \right) ^2 \varvec{\xi }_2\varvec{\xi }_2^T\\&\qquad +\,\varvec{\sigma }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) \varvec{\xi }_2\varvec{\mu }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) ^T\\&\qquad +\,\varvec{\sigma }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) \varvec{\mu }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) \varvec{\xi }_2^T. \end{aligned}$$

Given that \(\varvec{\xi }_2\) and \(\varvec{\xi }_3\) are independent, \(\mathbb {E}\left[ \varvec{\xi }_2 \right] =\varvec{0}\) and \(\mathbb {E}\left[ \varvec{\xi }_2\varvec{\xi }_2^T \right] =\widehat{\varvec{R}}_{t_2}\), one has:

$$\begin{aligned} \begin{array}{c} \mathbb {E}\left[ \varvec{Y}^c_\text {nest}\left( \varvec{x}_1,\varvec{x}_2 \right) \varvec{Y}^c_\text {nest}\left( \varvec{x}_1,\varvec{x}_2 \right) ^T \right] = \mathbb {E}\left[ \left( \varvec{\sigma }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) \right) ^2 \right] \widehat{\varvec{R}}_{t_2} \\ +\,\mathbb {E}\left[ \varvec{\mu }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) \varvec{\mu }_2^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) ^T \right] . \end{array} \end{aligned}$$

1.5 Proof of Proposition 4

By definition (see Eq. 47), one has:

$$\begin{aligned} \varvec{Y}^c_\text {nest}\left( \varvec{x}_1,\varvec{x}_2 \right) \overset{d}{=}\varvec{\mu }_{2}^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) +\varvec{\xi }_{2}\sigma _{\varvec{x}2}^c\left( \varvec{\mu }_{3}^c\left( \varvec{x}_1 \right) +\varvec{\xi }_{3}\sigma _{\varvec{x}3}^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) , \end{aligned}$$

where \(\varvec{\xi }_2 \sim \mathcal {N}\left( \varvec{0},\widehat{\varvec{R}}_{t_2} \right) \) and \(\varvec{\xi }_3 \sim \mathcal {N}\left( \varvec{0},\widehat{\varvec{R}}_{t_3} \right) \).

If \(\sigma ^c_{\varvec{x}3}\left( \varvec{x}_1 \right) \) is small enough, then the previous equation can be linearized with respect to \(\sigma ^c_{\varvec{x}3}\left( \varvec{x}_1 \right) \). Thus, one has:

$$\begin{aligned}&\varvec{Y}^c_\text {nest}\left( \varvec{x}_1,\varvec{x}_2 \right) \overset{d}{\approx }\varvec{\mu }_2^c\left( \varvec{\mu }_3^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) +\dfrac{\partial \varvec{\mu }_2^c}{\partial \varvec{\rho } }\left( \varvec{\mu }^c_3\left( \varvec{x}_1 \right) ,\varvec{x}_2 \right) \sigma ^c_{\varvec{x}3}\left( \varvec{x}_1 \right) \varvec{\xi }_3 \\&\quad +\,\varvec{\xi }_2\sigma ^c_{\varvec{x}2}\left( \varvec{\mu }_3^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) . \end{aligned}$$

Thanks to the fact that \(\varvec{\xi }_2\) and \(\varvec{\xi }_3\) are independent, a Gaussian predictor of the nested code can be obtained from the previous equation. Furthermore, this Gaussian process has the following mean function:

$$\begin{aligned} \varvec{\mu }_\text {nest}^c\left( \varvec{x}_1,\varvec{x}_2 \right) =\varvec{\mu }_2^c\left( \varvec{\mu }_3^c\left( \varvec{x}_1 \right) , \varvec{x}_2 \right) , \end{aligned}$$
(84)

and its covariance function is:

$$\begin{aligned}&\varvec{C}^c_\text {nest}\left( \left( \varvec{x}_1,\varvec{x}_2 \right) ,\left( \varvec{x}_1^{'},\varvec{x}_2^{'} \right) \right) = \widehat{\varvec{R}}_{t_2}C^c_{2}\left( \left( \varvec{\mu }^c_3\left( \varvec{x}_1 \right) ,\varvec{x}_2 \right) , \left( \varvec{\mu }^c_3\left( \varvec{x}_1^{'} \right) ,\varvec{x}_2^{'} \right) \right) \\&\quad +\,\dfrac{\partial \varvec{\mu }_2^c}{\partial \varvec{\rho } }\left( \varvec{\mu }^c_3\left( \varvec{x}_1 \right) ,\varvec{x}_2 \right) \widehat{\varvec{R}}_{t_3} \left( \dfrac{\partial \varvec{\mu }_2^c}{\partial \varvec{\rho } }\left( \varvec{\mu }^c_3\left( \varvec{x}_1^{'} \right) ,\varvec{x}_2^{'} \right) \right) ^T C^c_{3}\left( \varvec{x}_1,\varvec{x}_1^{'} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marque-Pucheu, S., Perrin, G. & Garnier, J. An efficient dimension reduction for the Gaussian process emulation of two nested codes with functional outputs. Comput Stat 35, 1059–1099 (2020). https://doi.org/10.1007/s00180-019-00926-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00926-7

Keywords

Navigation