Abstract
The generalized gamma distribution (GGD) is a popular distribution because it is extremely flexible. Due to the density function structure of GGD, estimating the parameters of the GGD family by statistical point estimation techniques is a complicated task. In other words, for the parameter estimation, the maximizing likelihood function of GGD is a problematic case. Hence, alternative approaches can be used to obtain estimators of GGD parameters. This paper proposes an alternative parameter estimation method for GGD by using the heuristic optimization approaches such as Genetic Algorithms (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), and Simulated Annealing (SA). A comparison between different modern heuristic optimization methods applied to maximize the likelihood function for parameter estimation is presented in this paper. The paper also investigates both the performance of heuristic methods and estimation of GGD parameters. Simulations show that heuristic approaches provide quite accurate estimates. In most of the cases, DE has better performance than other heuristics in terms of bias values of parameter estimations. Besides, the usefulness of an alternative parameter estimation method for GGD using the heuristic optimization approach is illustrated with a real data set.








Similar content being viewed by others
References
Aksoy H (2000) Use of gamma distribution in hydrological analysis. Turk J Eng Environ Sci 24(6):419–428
Bai J, Jakeman AJ, McAleer M (1991) A new approach to maximum likelihood estimation of the three-parameter gamma and Weibull distributions. Aust J Stat 33:397–410
Bain L, Antle C (1967) Estimation of parameters in the Weibull distribution. Technometrics 9(3):621–627
Bard Y (1970) Comparison of gradient methods for the solution of nonlinear parameter estimation problems. SIAM J Numer Anal 7(1):157–186
Barnett VD (1966) Evaluation of the maximum likelihood estimators when the likelihood equation has multiple roots. Biometrika 53:151–165
Bowman KO, Shenton LR (1988) Properties of estimators for the gamma distribution. Marcel Dekker, Inc., New York
Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. Creative Commons, Melbourne
Chandrasekar K, Ramana NV (2012) Performance comparison of GA, DE, PSO and SA approaches in enhancement of total transfer capability using facts devices. J Electr Eng Technol 7(4):493–500
Cohen AC, Whitten BJ (1988) Parameter estimation in reliability and life span models. Marcel Dekker, New York
Comtois P (2000) The gamma distribution as the true aerobiological probability density function (PDF). Aerobiologia 16:171–176
Das S, Abraham A, Konar A (2008) Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. Comput Intell 116:1–38
Dubey S (1965) Asymptotic properties of several estimators of Weibull parameters. Technometrics 7(3):423–434
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of 6th international symposium on micro machine and human science, Nagoya, Japan, IEEE Service Center, Piscataway NJ, pp 39–43
Eberhart R, Shi Y (2001) Particle swarm optimization: developments, applications and resources. Proc IEEE Int Cong Evolut Comput 1:81–86
Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc Lond Ser A 222:309–368
Gaskó N, Dumitrescu D, Lung RI (2011) evolutionary detection of berge and nash equilibria. In: Pelta DA, Krasnogor N, Dumitrescu D, Chira C, Lung R (eds) Nature inspired cooperative strategies for optimization (NICSO 2011). Studies in computational intelligence, vol 387. Springer, Berlin
Ghitany ME, Atieh B, Nadarajah S (2008) Lindley distribution and its application. Math Comput Simul 78(4):493–506
Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley, Boston
Gomes O, Combes C, Dussauchoy A (2008) Parameter estimation of the generalized gamma distribution. Math Comput Simul 79:955–963
Hager HW, Bain LJ (1970) Inferential procedures for the generalized gamma distribution. J Am Stat Assoc 65:1601–1609
Hager HW, Bain LJ, Antle CE (1971) Reliability estimation for the generalized gamma distribution and robustness of the Weibull model. Technometrics 13:547–557
Hasanien HM, Muyeen SM (2012) Design optimization of controller parameters used in variable speed wind energy conversion system by genetic algorithms. IEEE Trans Sustain Energy 3(2):200–208
Holland J (1975) Adaptation in natural and artificial systems. Michigan Press, Michigan
Huang PH, Hwang TY (2006) On new moment estimation of parameters of the generalized gamma distribution using it’s characterization. Taiwan J Math 10:1083–1093
Husak GJ, Michaelsen J, Funk C (2007) Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int J Climatol 27(7):935–944
Jones B, Waller WG, Feldman A (1978) Root isolation using function values. BIT 18:311–319
Kasprzyk I, Walanus A (2014) Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics. Aerobiologia 30:369–383
Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948
Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, vol 2. IEEE, pp 1671–1676. https://doi.org/10.1109/CEC.2002.100449
Khodabin M, Ahmadabadi A (2010) Some properties of generalized gamma distribution. J Math Sci 4:9–28
Kirkpatrick S (1984) Optimization by simulated annealing-quantitative studies. J Stat Phys 34:975–986
Kirkpatrick S, Gerlatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680
Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, New Jersey
Lawless JF (1980) Inference in the generalized gamma and log gamma distributions. Technometrics 22:409–419
Lawless JE (1982) Statistical models and methods for lifetime data. Wiley, New York
Lehman E (1962) Shapes, moments and estimators of the Weibull distribution. IEEE Trans Reliab 11(3):32–38
Marini F, Walczak B (2015) Particle swarm optimization (PSO): a tutorial. Chemom Intell Lab Syst 149:153–165
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1091
Örkcü HH, Aksoy E, Dogan MI (2015a) Estimating the parameters of 3-p Weibull distribution through differential evolution. Appl Math Comput 251:211–224
Örkcü HH, Özsoy VS, Aksoy E, Dogan MI (2015b) Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison. Appl Math Comput 268:201–226
Özsoy VS, Örkcü HH, Bal H (2018) Particle swarm optimization applied to parameter estimation of the four-parameter burr III distribution. Iran J Sci Technol Trans A Sci 42(2):895–909
Parr VB, Webster JT (1965) A method for discriminating between failure density functions used in reliability predictions. Technometrics 7:1–10
Puthenpura S, Sinha NK (1986) Modified maximum likelihood method for the robust estimation of system parameters from very noisy data. Automatica 22:231–235
Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. In Proceedings of the 14th annual conference on computer graphics and interactive techniques, pp 25–34
Ross R (1994) Graphical methods for plotting and evaluating Weibull distributed data. In: Proceedings of the 4th international conference on properties and applications dielectric materials, Brisbane, Australia, pp 250–253
Shanker R, Shukla KK (2016) On modelling of lifetime data using three-parameter generalized lindley and generalized gamma distributions. Biometrics Biostat Int J 4(5):00107
Shi YH, Eberhart RC (1998) A modified particle swarm optimizer. IEEE international conference on evolutionary computation, Anchorage Alaska, pp 69–73
Singh A, Singh AK, Iaci JR (2002) Estimation of the exposure point concentration term using a gamma distribution. Technology Support Center Issue EPA/600/R-02/084
Stacy EW, Mihram GA (1965) Parameter estimation for a generalized gamma distributions. Technometrics 7:349–358
Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical report TR-95-012. International Computer Science Institute, Berkeley
Storn R, Price K (1997) Differential evolution a simple and effcient heuristic for global optimization over continuous spaces. J Global Optim 11(341):359
Tadikamalla PR (1979) Random sampling from the generalized gamma distribution. Computing 23:199–203
Vaughan DC (1992) On the Tiku-Suresh method of estimation. Commun Stat Theory Methodol 21:451–469
Von Neumann J (1951) Various techniques used in connection with random digits. Paper No. 13 in “Monte Carlo method”. NBS Appl Math Series No. 12 U.S. Government Printing Office
Wang F (2014) Using BBPSO algorithm to estimate the Weibull parameters with censored data. Commun Stat Simul Comput 43:2614–2627
White JS (1969) The moments of log-Weibull order statistic. Technometrics 11(2):373–386
Wingo DR (1987) Computing maximum-likelihood parameter estimates of the generalized gamma distribution by numerical root isolation. IEEE Trans Reliab 5:586–590
Yilmaz H, Sazak HS (2014) Double-looped maximum likelihood estimation for the parameters of the generalized gamma distribution. Math Comput Simul 98:18–30
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Özsoy, V.S., Ünsal, M.G. & Örkcü, H.H. Use of the heuristic optimization in the parameter estimation of generalized gamma distribution: comparison of GA, DE, PSO and SA methods. Comput Stat 35, 1895–1925 (2020). https://doi.org/10.1007/s00180-020-00966-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00180-020-00966-4