Skip to main content
Log in

Maximum likelihood estimation for scale-shape mixtures of flexible generalized skew normal distributions via selection representation

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A scale-shape mixtures of flexible generalized skew normal (SSMFGSN) distributions is proposed as a novel device for modeling asymmetric data. Computationally feasible EM-type algorithms derived from the selection mechanism are presented to compute maximum likelihood (ML) estimates of SSMFGSN distributions. Some characterizations and probabilistic properties of the SSMFGSN distributions are also studied. Monte Carlo simulations show that the proposed estimating procedures can provide desirable asymptotic properties of the ML estimates and demand less computational burden in comparison with other existing algorithms based on convolution representations. The usefulness of the proposed methodology is illustrated by analyzing a real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

  • Arellano-Valle RB, Ferreira CS, Genton M (2018) Scale and shape mixtures of multivariate skew-normal distributions. J Multivar Anal 166:98–110

    Article  MathSciNet  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\)-distribution. J R Stat Soc Ser B 65:367–389

    Article  MathSciNet  Google Scholar 

  • Basford KE, Greenway DR, Mclachlan GJ, Peel D (1997) Standard errors of fitted means under normal mixture. Comput Stat 12:1–17

    MATH  Google Scholar 

  • Basso RM, Lachos VH, Cabral CRB, Ghosh P (2010) Robust mixture modeling based on scale mixtures of skew-normal distributions. Comput Stat Data Anal 54:2926–2941

    Article  MathSciNet  Google Scholar 

  • Branco MD, Dey DK (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 79:99–113

    Article  MathSciNet  Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J Roy Stat Soc Ser B 9:1–38

    MATH  Google Scholar 

  • Ferreira CS, Bolfarine H, Lachos VH (2011) Skew scale mixtures of normal distributions: properties and estimation. Stat Methodol 8:154–171

    Article  MathSciNet  Google Scholar 

  • Gómez HW, Venegas O, Bolfarine H (2007) Skew-symmetric distributions generated by the distribution of the normal distribution. Environmetrics 18:395–407

    Article  MathSciNet  Google Scholar 

  • Gómez-Sánchez-Manzano E, Gómez-Villegas MA, Marín JM (2008) Multivariate exponential power distributions as mixtures of normal distributions with Bayesian applications. Commun Stat Theory Methods 37:972–985

    Article  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–260

    Article  MathSciNet  Google Scholar 

  • Jamalizadeh A, Lin TI (2017) A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Comput Stat 32:451–474

    Article  MathSciNet  Google Scholar 

  • Lin TI, Lee JC, Hsieh WJ (2007a) Robust mixture modeling using the skew \(t\) distribution. Stat Comput 17:81–92

    Article  MathSciNet  Google Scholar 

  • Lin TI, Lee JC, Yen SY (2007b) Finite mixture modelling using the skew normal distribution. Stat Sin 17:909–927

    MathSciNet  MATH  Google Scholar 

  • Lin TI, Ho HJ, Lee CR (2014) Flexible mixture modelling using the multivariate skew-\(t\)-normal distribution. Stat Comput 24:531–546

    Article  MathSciNet  Google Scholar 

  • Liu CH, Rubin DB (1994) The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81:633–648

    Article  MathSciNet  Google Scholar 

  • Ma Y, Genton MG (2004) Flexible class of skew-symmetric distributions. Scand J Stat 31:459–468

    Article  MathSciNet  Google Scholar 

  • Meng XL, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–278

    Article  MathSciNet  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  Google Scholar 

  • Smirnov NV (1948) Tables for estimating the goodness of fit of empirical distributions. Ann Math Stat 19:279–281

    Article  MathSciNet  Google Scholar 

  • Wang WL, Jamalizadeh A, Lin TI (2020) Finite mixtures of multivariate scale-shape mixtures of skew-normal distributions. Stat Pap 61:2643–2670

    Article  MathSciNet  Google Scholar 

  • West M (1987) On scale mixtures of normal distributions. Biometrika 74:646–648

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the editors and three anonymous referees for their insightful comments and constructive suggestions that greatly improved the quality of this paper. This research was supported by the Ministry of Science and Technology of Taiwan under Grant No. 109-2118-M-005-005-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-I Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Eq. (27)

Appendix A: Proof of Eq. (27)

Without loos of generality, we assume that \(\xi =0\) and \(\sigma =1\). Let \(Y\overset{d}{=}(\tau ^{-1/2})Z_1\vert (\tau ^{-1/2}Z_2<\lambda _1(\tau ^{-1/2}Z_1)+\cdots +\lambda _m(\tau ^{-1/2}Z_1)^{2m-1})\), where \(Z_1\) and \(Z_2\) are two independent N(0, 1) variables and \(\tau \sim \varGamma (\nu /2,\nu /2)\). Clearly, \((X_1,X_2)^\top \overset{d}{=}\tau ^{-1/2}(Z_1,Z_2)^\top \sim t_2({\mathbf {0}},I_2,\nu )\), where following a bivariate t distribution \(I_2\) is an identity matrix of order 2. Therefore, we have \(X_1\sim t(0,1,\nu )\), \(X_2\sim t(0,1,\nu )\) and \(\sqrt{\frac{\nu +1}{\nu +z^2}}X_2\vert (X_1=z)\sim t(0,1,\nu +1)\). By Bayes’ theorem, the pdf of \(Y\overset{d}{=}X_1\vert (X_2<\lambda _1X_1+\cdots +\lambda _mX_1^{2m-1})\) is

$$\begin{aligned} f_Y(y)= & {} \frac{f_{X_1}(y)Pr(X_2<\lambda _1X_1+\cdots +\lambda _mX_1^{2m-1}\vert X_1=y)}{\Pr (X_2<\lambda _1X_1+\cdots +\lambda _mX_1^{2m-1})}\\= & {} 2f_{X_1}(y)Pr\bigg (\sqrt{\frac{\nu +1}{\nu +y^2}}X_2 <\sqrt{\frac{\nu +1}{\nu +y^2}}(\lambda _1y+\cdots +\lambda _my^{2m-1})\vert X_1=y\bigg )\\= & {} 2t(y;\nu )T\bigg (\sqrt{\frac{\nu +1}{\nu +y^2}}(\lambda _1y+\cdots +\lambda _my^{2m-1});\nu +1\bigg ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, A., Amirzadeh, V., Jamalizadeh, A. et al. Maximum likelihood estimation for scale-shape mixtures of flexible generalized skew normal distributions via selection representation. Comput Stat 36, 2201–2230 (2021). https://doi.org/10.1007/s00180-021-01079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-021-01079-2

Keywords

Profiles

  1. Abbas Mahdavi