Skip to main content

Advertisement

Log in

A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, a highly effective Bayesian sampling algorithm based on auxiliary variables is used to estimate the graded response model with non-ignorable missing response data. Compared with the traditional marginal likelihood method and other Bayesian algorithms, the advantages of the new algorithm are discussed in detail. Based on the Markov Chain Monte Carlo samples from the posterior distributions, the deviance information criterion and the logarithm of the pseudomarignal likelihood are employed to compare the different missing mechanism models. Two simulation studies are conducted and a detailed analysis of the sexual compulsivity scale data is carried out to further illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerman TA (1996) Developments in multidimensional item response theory. Appl Psychol Measure 20:309–310

    Article  Google Scholar 

  • Ackerman TA (1996) Graphical representation of multidimensional item response theory analyses. Appl Psychol Measure 20:311–329

    Article  Google Scholar 

  • Albert JH (1992) Bayesian estimation of normal ogive item response curves using Gibbs sampling. J Edu Stat 17:251–269

    Article  Google Scholar 

  • Andrich D (1978) Application of a psychometric rating model to ordered categories which are scored with successive integers. Appl Psychol Measure 2:581–594

    Article  Google Scholar 

  • Baker FB (1985) The basics of item response theory. Heinemann, Portsmouth, NH

    Google Scholar 

  • Baker FB (1992) Item response theory: parameter estimation techniques. Marcel Dekker, New York

    MATH  Google Scholar 

  • Béguin AA, Glas CAW (2001) MCMC estimation of multidimensional IRT models. Psychometrika 66:541–561

    Article  MathSciNet  MATH  Google Scholar 

  • Bjorner JB, Kosinski M, Ware KJE Jr (2003) Calibration of an item pool for assessing the burden of headaches: an application of item response theory to the Headache Impact Test (HIT\(^{\rm TM}\) 453). Qual Life Res 12:913–933

    Article  Google Scholar 

  • Bock RD (1972) Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika 37:29–51

    Article  MATH  Google Scholar 

  • Bock RD, Aitkin M (1981) Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika 46:443–459

    Article  MathSciNet  Google Scholar 

  • Bolt DM, Hare RD, Vitale JE, Newman JP (2004) A multigroup item response theory analysis of the psychopathy checklist-revised. Psychol Assess 16:155–168

    Article  Google Scholar 

  • Brooks SP, Gelman A (1998) Alternative methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Google Scholar 

  • Brooks S, Gelman A, Jones G, Meng XL (2011) Handbook of Markov chain Monte Carlo. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Carpita M, Manisera M (2011) On the imputation of missing data in surveys with Likert-Type Scales. J Class 28:93–112

    Article  MathSciNet  Google Scholar 

  • Chen M-H, Shao Q-M, Ibrahim JG (2000) Monte Carlo Methods in Bayesian Computation. Springer, New York

    Book  MATH  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. Am Stat 49:327–335

    Google Scholar 

  • Fox JP (2005) Multilevel IRT using dichotomous and polytomous items. Br J Math Stat Psychol 58:145–172

    Article  Google Scholar 

  • Fox J-P (2010) Bayesian item response modeling: Theory and applications. Springer, New York, NY

    Book  MATH  Google Scholar 

  • Fox J-P, Glas CAW (2001) Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika 66:269–286

    Article  MathSciNet  MATH  Google Scholar 

  • Geisser S, Eddy WF (1979) A predictive approach to model selection. J Am Stat Assoc 74:153–160

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand AE, Dey DK, Chang H (1992) Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, Oxford, UK, pp 147–167

    Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  MATH  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  • Ghosh M, Ghosh A, Chen M, Agresti A (2000) Noninformative priors for one parameter item response models. J Stat Plan Inference 88(486):99–115

    Article  MathSciNet  MATH  Google Scholar 

  • Glas CAW, Pimentel JL (2008) Modeling nonignorable missing data in speeded tests. Edu Psychol Measure 68:907–922

    Article  MathSciNet  Google Scholar 

  • Glas CAW, Pimentel JL, Lamers MA (2015) Nonignorable data in IRT mdoels: polytomous response and response propensity models with covariates. Psychol Test Assess Model 57:523–541

    Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  MathSciNet  MATH  Google Scholar 

  • Heckman J (1976) The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Anna Econo Soc Measure 5:475–492

    Google Scholar 

  • Heckman J (1979) Sample selection bias as a specification error. Econometrica 47:153–61

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman MD, Gelman A (2014) The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 15:1593–1623

    MathSciNet  MATH  Google Scholar 

  • Holman R, Glas CAW (2005) Modelling non-ignorable missing-data mechanisms with item response theory models. Br J Math Stat Psychol 58:1–17

    Article  MathSciNet  Google Scholar 

  • Huisman M (2000) Imputation of missing item responses: Some simple techniques. Qual Quant 34:331–351

    Article  Google Scholar 

  • Ibrahim JG, Chen M-H, Sinha D (2001) Bayesian Survival Analysis. Springer, New York

    Book  MATH  Google Scholar 

  • Jiang ZH, Templin J (2019) Gibbs samplers for logistic item response models via the pólya-gamma distribution: a computationally efficient data-augmentation strategy. Psychometrika 84:358–374

    Article  MathSciNet  MATH  Google Scholar 

  • Kalichman SC, Rompa D (1995) Sexual sensation seeking and sexual compulsivity scales: validity, and predicting hiv risk behavior. J Personal Assess 65:586–601

    Article  Google Scholar 

  • Korobko OK, Glas CAW, Bosker RJ, Luyten JW (2008) Comparing the difficulty of examination subjects with item response theory. J Edu Measure 45:137–155

    Google Scholar 

  • Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22:1–55

    Google Scholar 

  • Little RJA (1993) Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc 88:125–134

    MATH  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Lord FM (1983) Maximum likelihood estimation of item response parameters when some responses are omitted. Psychometrika 48:477–482

    Article  MATH  Google Scholar 

  • Lord FM, Novick MR (1968) Statistical Theories of Mental Test Scores. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Lu J, Zhang JW, Tao J (2018) Slice-Gibbs sampling algorithm for estimating the parameters of a multilevel item response model. J Math Psychol 82:12–25

    Article  MathSciNet  MATH  Google Scholar 

  • Masters GN (1982) A Rasch model for partial credit scoring. Psychometrika 47:149–174

    Article  MATH  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  MATH  Google Scholar 

  • Moustaki I, Knott M (2000) Weighting for item non-response in attitude scales by using latent variable models with covariates. J R Stat Soc Series A 163:445–459

    Article  Google Scholar 

  • Muraki E (1992) Fitting a polytomous item response model to Likert-type data. Appl Psychol Measure 14:59–71

    Article  Google Scholar 

  • Natesan P, Limbers C, Varni JW (2010) Bayesian estimation of graded response multilevel models using gibbs sampling: formulation and illustration. Edu Psychol Measure 70:420–439

    Article  Google Scholar 

  • Neal RM (2003) Slice sampling. Ann Stat 31:705–767

    Article  MathSciNet  MATH  Google Scholar 

  • O’Muircheartaigh C, Moustaki I (1999) Symmetric pattern models: a latent variable approach to item non-response in attitudes scales. J R Stat Soc 162:177–194

    Article  Google Scholar 

  • Reckase MD (1985) The difficulty of test items that measure more than one ability. Appl Psychol Measure 9:401–412

    Article  Google Scholar 

  • Reckase MD (1997) A linear logistic multidimensional model for dichotomous item response data. In: van der Linden WJ, Hambleton RK (eds) Handbook of modern item response theory. Springer-Verlag, New York

    Google Scholar 

  • Rose, N. (2013). Item nonresponses in educational and psychological measurement. Doctoral Thesis, Friedrich-Schiller University, Jena

  • Rose, N., von Davier, M., & Xu, X. (2010). Modeling nonignorable missing data with IRT. Research Report No. RR-10-11. Princeton, NJ: Educational Testing Service

  • Rubin DB (1976) Inference and missing data. Biometrika 63:581–592

    Article  MathSciNet  MATH  Google Scholar 

  • Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores (Psychometric Monograph No. 17). Richmond, VA: Psychometric Society. Retrieved from http://www.psychometrika.org/journal/online/MN17.pdf

  • Schafer JL (1997) Analysis of incomplete multivariate data. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Series B 64:583–639

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82:528–550

    Article  MathSciNet  MATH  Google Scholar 

  • Tutz G (1990) Sequential item response models with an ordered response. Br J Math Stat Psychol 43:39–55

    Article  MathSciNet  MATH  Google Scholar 

  • Tutz G (1991) Sequential models in categorical regression. Comput Stat Data Anal 11:275–295

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyuan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 341 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Z. & Tao, J. A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data. Comput Stat 36, 2643–2669 (2021). https://doi.org/10.1007/s00180-021-01100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-021-01100-8

Keywords

Navigation