Skip to main content
Log in

Penalized spline estimation for panel count data model with time-varying coefficients

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We consider a panel count data model with both time-varying and time-invariant coefficients. We estimate the baseline function and the time-varying coefficients using penalized splines based on the pseudolikelihood method. We evaluate the performance of three efficient Newton–Rapshon-based algorithms and another adaptive barrier algorithm. We propose a novel cross-validated score to select the smoothing parameters and deduce an easy-to-compute approximation to the score. Extensive simulations are conducted to compare the four algorithms, to compare the proposed penalized spline estimation with regression spline estimation and kernel estimation, and to assess the inference performance and robustness of the penalized spline estimation. Finally, we illustrate our method by using a data set from a childhood wheezing study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Byar D (1980) The veterans administration study of chemoprophylaxis for recurrent stage i bladder tumors: comparisons of placebo, pyridoxine, and topical thiotepa. In: Bladder tumors and other topics in urological oncology. pp 363–370

  • Cheng G, Zhang Y, Lu L (2011) Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data. J Nonparametr Stat 23(2):567–579

    Article  MathSciNet  Google Scholar 

  • Efraim AHNB, Levischaffer F (2008) Review: tissue remodeling and angiogenesis in asthma: the role of the eosinophil. Ther Adv Respir Dis 2(3):163–171

    Article  Google Scholar 

  • Eilers PHC, Marx BD (1996) Flexible smoothing with b-splines and penalties. Stat Sci 11(2):89–121

    Article  MathSciNet  Google Scholar 

  • Green P, Silverman B (1994) Nonparametric regression and generalized linear models: a roughness penalty approach. J Chapman & Hall, London

    Book  Google Scholar 

  • Hua L, Zhang Y, Tu W (2014) A spline-based semiparametric sieve likelihood method for over-dispersed panel count data. Canad J Stat Revue Canadienne De Statistique 42(2):217–245

    Article  MathSciNet  Google Scholar 

  • Jongbloed G (1998) The iterative convex minorant algorithm for nonparametric estimation. J Comput Graph Stat 7(3):310–321

    MathSciNet  Google Scholar 

  • Kauermann G (2005) A note on smoothing parameter selection for penalized spline smoothing. J Stat Plan Inference 127(1):53–69

    Article  MathSciNet  Google Scholar 

  • Krivobokova T, Kauermann G (2007) A note on penalized spline smoothing with correlated errors. J Am Stat Assoc 102(480):1328–1337

    Article  MathSciNet  Google Scholar 

  • Lu M, Li C (2017) Penalized estimation for proportional hazards models with current status data. Stat Med 36(30):4893–4907

    Article  MathSciNet  Google Scholar 

  • Lu M, Zhang Y, Huang J (2007) Estimation of the mean function with panel count data using monotone polynomial splines. Biometrika 94(3):705–718

    Article  MathSciNet  Google Scholar 

  • Lu M, Zhang Y, Huang J (2009) Semiparametric estimation methods for panel count data using monotone b-splines. J Am Stat Assoc 104(487):1060–1070

    Article  MathSciNet  Google Scholar 

  • Nielsen JD, Dean CB (2008) Adaptive functional mixed nhpp models for the analysis of recurrent event panel data. Comput Stat Data Anal 52(7):3670–3685

    Article  MathSciNet  Google Scholar 

  • O’Sullivan F (1986) A statistical perspective on ill-posed inverse problems. Stat Sci 1(4):502–518

  • O’Sullivan F (1988) Fast computation of fully automated log-density and log-hazard estimators. SIAM J Sci Stat Comput 9(2):363–379

    Article  MathSciNet  Google Scholar 

  • Ruppert D (2002) Selecting the number of knots for penalized splines. J Comput Graph Stat 11(4):735–757

    Article  MathSciNet  Google Scholar 

  • Schumaker LL (1981) Spline functions: basic theory. Wiley, New York

    MATH  Google Scholar 

  • Sun J, Kalbfleisch J (1995) Estimation of the mean function of point processes based on panel count data. Stat Sin 5(1):279–289

  • Sun J, Wei LJ (2000) Regression analysis of panel count data with covariate-dependent observation and censoring times. J R Stat Soc Ser B Stat Methodol 62(2):293–302

    Article  MathSciNet  Google Scholar 

  • Trevor Hastie RT (1990) Generalized additive models. Chapman and Hall, New York

    MATH  Google Scholar 

  • Tu W, Batteiger BE, Wiehe S, Ofner S, Van Der Pol B, Katz BP, Orr DP, Fortenberry JD (2009) Time from first intercourse to first sexually transmitted infection diagnosis among adolescent women. JAMA Pediatr 163(12):1106–1111

    Google Scholar 

  • Verweij PJM, Van Houwelingen HC (1993) Cross-validation in survival analysis. Stat Med 12(24):2305–2314

    Article  Google Scholar 

  • Verweij PJM, Van Houwelingen HC (1994) Penalized likelihood in cox regression. Stat Med 13:2427–2436

    Article  Google Scholar 

  • Wang Y, Yu Z (2019a) A kernel regression model for panel count data with time-varying coefficients. arXiv:1903.10233

  • Wang Y, Yu Z (2019b) A kernel regression model for panel count data with time-varying coefficients. arXiv:1903.10233

  • Wellner JA, Zhang Y (2000) Two estimators of the mean of a counting process with panel count data. Ann Stat 28(3):779–814

    Article  MathSciNet  Google Scholar 

  • Wellner JA, Zhang Y (2007) Two likelihood-based semiparametric estimation methods for panel count data with covariates. Ann Stat 35(5):2106–2142

    Article  MathSciNet  Google Scholar 

  • Yao W, Barbetuana FM, Llapur CJ, Jones MH, Tiller C, Kimmel R, Kisling J, Nguyen ET, Nguyen J, Yu Z et al (2010) Evaluation of airway reactivity and immune characteristics as risk factors for wheezing early in life. J Allergy Clin Immunol 126(3):483–488

    Article  Google Scholar 

  • Yu Z, Liu L, Bravata DM, Williams LS, Tepper RS (2013) A semiparametric recurrent events model with time-varying coefficients. Stat Med 32(6):1016–1026

    Article  MathSciNet  Google Scholar 

  • Zhang Y (2002) A semiparametric pseudolikelihood estimation method for panel count data. Biometrika 89(1):39–48

    Article  MathSciNet  Google Scholar 

  • Zhao H, Tu W, Yu Z (2018) A nonparametric time-varying coefficient model for panel count data. J Nonparametr Stat 30(3):640–661

    Article  MathSciNet  Google Scholar 

  • Zhao H, Zhang Y, Zhao X, Yu Z (2019) A nonparametric regression model for panel count data analysis. Stat Sin 29(2):809–826

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported in part by National Natural Science Foundation of China 11671256(Yu), by 2016YFC0902403(Yu) of Chinese Ministry of Science and Technology, by the University of Michigan and Shanghai Jiao Tong University Collaboration Grant (2017, Yu), and also by Neil Shen’s SJTU Medical Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangsheng Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The derivation of the approximated CVL score

The derivation of the approximated CVL score

Observe that \( \mathrm{max}_{\gamma \in \varvec{\varTheta } } l^{\lambda }(\gamma ) \) can be reformulated as the optimization problem with inequality constraints:

$$\begin{aligned} \min (-l^{\lambda }(\gamma )) \qquad \mathrm{subject \ to \ } {\left\{ \begin{array}{ll} \ g_{1}(\gamma )=\eta _{1,0}-\eta _{2,0}\le 0 \\ \ g_{2}(\gamma )=\eta _{2,0}-\eta _{3,0}\le 0 \\ \quad \qquad \qquad \vdots \\ \ g_{q_{n}-1}(\gamma )=\eta _{q_{n}-1,0}-\eta _{q_{n},0}\le 0 \end{array}\right. } \end{aligned}$$
(8)

By the Karush-Kuhn-Tucher (KKT) condition, if \( b^{\lambda } \) is the solution to the optimization problem (8), then there exist \( u_{i}^{*}\ge 0, i=1,2,\ldots ,q_{n}-1 \), such that \( \nabla _{\gamma } l^{\lambda }(b^{\lambda })=\sum _{i=1}^{q_{n}-1} u_{i}^{*}\nabla _{\gamma } g_{i}(b^{\lambda }) \). Define \( f(\gamma ) = -l^{\lambda }(\gamma )+\sum _{i=1}^{q_{n}-1} u_{i}^{*} g_{i}(\gamma ) \) and \( {\hat{\gamma }} = \mathrm{argmin}f(\gamma ) \), by the concavity of \( l^{\lambda }(\gamma ) \) and the sufficient condition for KKT problems, we have

$$\begin{aligned} b^{\lambda }=\mathop {\mathrm{argmax}}\limits _{\gamma \in \varvec{\varTheta } } l^{\lambda }(\gamma ) \Leftrightarrow b^{\lambda }=\mathrm{argmin}f(\gamma ) = {\hat{\gamma }}. \end{aligned}$$

Similarily, there exist \( w_{k}^{*}\ge 0, k=1,2,\ldots ,q_{n}-1 \), such that \( \nabla _{\gamma } l^{\lambda }_{(-(i,j))}(b^{\lambda }_{(-(i,j))})=\sum _{k=1}^{q_{n}-1} w_{k}^{*}\nabla _{\gamma } g_{k}(b^{\lambda }_{(-(i,j))}) \), and define \( f_{(-(i,j))}(\gamma ) = -l^{\lambda }_{(-(i,j))}(\gamma )+\sum _{k=1}^{q_{n}-1} w_{k}^{*} g_{k}(\gamma ) \) and \( {\hat{\gamma }} _{(-(i,j))} = \mathrm{argmin}f_{(-(i,j))}(\gamma ) \), then we have

$$\begin{aligned} b^{\lambda }_{(-(i,j))}=\mathop {\mathrm{argmax}}\limits _{ \gamma \in \varvec{\varTheta } } l^{\lambda }_{(-(i,j))}(\gamma ) \Leftrightarrow b^{\lambda }_{(-(i,j))}=\mathrm{argmin}f_{(-(i,j))}(\gamma ) = {\hat{\gamma }}_{(-(i,j))}. \end{aligned}$$

A first-order Taylor approximation at \( {\hat{\gamma }} \) yields

$$\begin{aligned} \nabla _{\gamma } f_{(-(i,j))} \big ({\hat{\gamma }}_{(-(i,j))}\big ) \approx \nabla _{\gamma } f_{(-(i,j))} \big ({\hat{\gamma }} \big ) + \nabla ^{2}_{\gamma } f_{(-(i,j))} \big ({\hat{\gamma }} \big )\cdot \big ({\hat{\gamma }}_{(-(i,j))}-{\hat{\gamma }}\big ). \end{aligned}$$

Define \( f_{(i,j)}(\gamma ) = f(\gamma )-f_{(-(i,j))}(\gamma ) \approx l_{(-(i,j))}(\gamma )-l(\gamma )=-l_{(i,j)}(\gamma ) \), then we have

$$\begin{aligned} 0 \approx - \nabla _{\gamma } f_{(i,j)} ({\hat{\gamma }} ) +\big (\nabla ^{2}_{\gamma } f({\hat{\gamma }} )-\nabla ^{2}_{\gamma } f_{(i,j)} ({\hat{\gamma }} ) \big ) \cdot \big ({\hat{\gamma }}_{(-(i,j))}-{\hat{\gamma }}\big ). \end{aligned}$$
(9)

The computation of the second derivatives can consume a lot of computer time and/or storage. Omitting this term \( \nabla ^{2}_{\gamma } f_{(i,j)} ({\hat{\gamma }} ) \) in (9) leads to

$$\begin{aligned} {\hat{\gamma }}_{(-(i,j))}&\approx {\hat{\gamma }}+ \big ( \nabla ^{2}_{\gamma } f({\hat{\gamma }} )\big )^{-1}\cdot \nabla _{\gamma } f_{(i,j)} ({\hat{\gamma }} ) \\&\approx {\hat{\gamma }}+\big ( \nabla ^{2}_{\gamma } l^{\lambda }({\hat{\gamma }} ) \big )^{-1}\cdot \nabla _{\gamma } l_{(i,j)} ({\hat{\gamma }} ). \end{aligned}$$

Then we have

$$\begin{aligned} l_{(i,j)} \big (b^{\lambda }_{(-(i,j))}\big )&\approx l_{(i,j)}\big [ b^{\lambda }+\big ( \nabla ^{2}_{\gamma } l^{\lambda }(b^{\lambda } ) \big )^{-1}\cdot \nabla _{\gamma } l_{(i,j)} (b^{\lambda } ) \big ] \\&\approx l_{(i,j)}( b^{\lambda })+\bigl ( \nabla _{\gamma } l_{(i,j)} (b^{\lambda } ) \bigr )^{T} \cdot \bigl [ \big ( \nabla ^{2}_{\gamma } l^{\lambda }(b^{\lambda } ) \big )^{-1}\cdot \nabla _{\gamma } l_{(i,j)} (b^{\lambda } ) \bigr ] \\&= l_{(i,j)}( b^{\lambda })+\mathrm{tr}\bigl [ \bigl ( \nabla ^{2}_{\gamma } l^{\lambda }(b^{\lambda } ) \bigr )^{-1}\cdot \nabla _{\gamma } l_{(i,j)} (b^{\lambda } ) \cdot \bigl ( \nabla _{\gamma } l_{(i,j)} (b^{\lambda } )\bigr )^{T} \bigr ]. \end{aligned}$$

Therefore,

$$\begin{aligned} CVL(\lambda ) \approx l(b^{\lambda })+ \mathrm{tr}\bigg \{ \bigl (\nabla ^{2}_{\gamma } l^{\lambda }(b^{\lambda } ) \big )^{-1}\cdot \bigg [ \sum \limits _{i=1}^n\sum \limits _{j=1}^{ K_{i}} \Big ( \nabla _{\gamma } l_{(i,j)} (b^{\lambda } ) \cdot \bigl ( \nabla _{\gamma } l_{(i,j)} (b^{\lambda } ) \bigr )^{T} \Big ) \bigg ] \bigg \}. \end{aligned}$$

In view of the fact that

$$\begin{aligned} \begin{aligned}&E \bigg [ \mathrm{tr}\bigg \{ \bigl (\nabla ^{2}_{\gamma } l^{\lambda }(b^{\lambda } ) \big )^{-1}\cdot \bigg [ \sum \limits _{i=1}^n\sum \limits _{j=1}^{ K_{i}} \Big ( \nabla _{\gamma } l_{(i,j)} (b^{\lambda } ) \cdot \bigl ( \nabla _{\gamma } l_{(i,j)} (b^{\lambda } ) \bigr )^{T} \Big ) \bigg ] \bigg \} \bigg ] \\&\quad = \mathrm{tr}\Bigl [ \bigl (\nabla ^{2}_{\gamma } l^{\lambda }(b^{\lambda } ) \big ) ^{-1} \cdot \bigl (- \nabla ^{2}_{\gamma } l(b^{\lambda } ) \bigl )\Bigr ]. \end{aligned} \end{aligned}$$

Hence,

$$\begin{aligned} \mathrm{CVL}(\lambda ) \approx l(b^{\lambda })-\mathrm{tr}\Big [\big (\nabla ^{2}_\gamma l^{\lambda }(b^{\lambda })\big )^{-1}\cdot \nabla ^{2}_\gamma l(b^{\lambda })\Big ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Yu, Z. Penalized spline estimation for panel count data model with time-varying coefficients. Comput Stat 36, 2413–2434 (2021). https://doi.org/10.1007/s00180-021-01109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-021-01109-z

Keywords

Navigation