Skip to main content
Log in

Bayesian inference for fractional Oscillating Brownian motion

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper deals with the problem of parameter estimation in a class of stochastic differential equations driven by a fractional Brownian motion with \(H \ge 1/2\) and a discontinuous coefficient in the diffusion. Two Bayesian type estimators are proposed for the diffusion parameters based on Markov Chain Monte Carlo and Approximate Bayesian Computation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrade P, Rifo L (2017) Long-range dependence and approximate Bayesian computation. Commun Stat Simul Comput 46(2):1219–1237

    Article  MathSciNet  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    Article  Google Scholar 

  • Bertin K, Torres S, Tudor CA (2011a) Drift parameter estimation in fractional diffusions, martingales and random walks. Stat Probab Lett 81(2):243–249

  • Bertin K, Torres S, Tudor CA (2011b) Maximum likelihood estimators and random walks in long memory models. Statistics 45(4):361–374

  • Bokil VA, Gibson NL, Nguyen SL, Thomann EA, Waymire EC (2020) An Euler–Maruyama method for diffusion equations with discontinuous coefficients and a family of interface conditions. J Comput Appl Math 368:112545

    Article  MathSciNet  Google Scholar 

  • Calvet LE, Czellar V (2014) Accurate methods for approximate Bayesian computation filtering. J Financ Econom 13:798–838

    Google Scholar 

  • De la Cruz R, Meza C, Arribas-Gil A, Carroll RJ (2016) Bayesian regression analysis of data with random effects covariates from nonlinear longitudinal measurements. J Multivar Anal 143:94–106

    Article  MathSciNet  Google Scholar 

  • Dieker A, Mandjes M (2003) On spectral simulation of fractional Brownian motion. Probab Eng Inf Sci 17(3):417–434

    Article  MathSciNet  Google Scholar 

  • Fay D, Moore AW, Brown K, Filosi M, Jurman G (2015) Graph metrics as summary statistics for approximate Bayesian computation with application to network model parameter estimation. J Complex Netw 3:52–83

    Article  MathSciNet  Google Scholar 

  • Garzón J, León JA, Torres S (2017) Fractional stochastic differential equation with discontinuous diffusion. Stoch Anal Appl 35(6):1113–1123

    Article  MathSciNet  Google Scholar 

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat Probab Lett 80:1030–1038

    Article  MathSciNet  Google Scholar 

  • Ilmonen P, Torres S, Viitasaari L (2020) Oscillating Gaussian processes. Stat Inference Stoch Process. https://doi.org/10.1007/s11203-020-09212-6

    Article  MathSciNet  MATH  Google Scholar 

  • Jasra A (2015) Approximate Bayesian computation for a class of time series models. Int Stat Rev 83:405–435

    Article  MathSciNet  Google Scholar 

  • Jasra A, Kantas N, Ehrlich E (2014) Approximate inference for observation-driven time series models with intractable likelihoods. ACM Trans Model Comput Simul 24(3):1–13

    Article  MathSciNet  Google Scholar 

  • Johnston ST, Simpson MJ, McElwain DLS, Binder BJ, Ross JV (2014) Interpreting scratch assays using pair density dynamics and approximate Bayesian computation. Open Biol 4:140097

    Article  Google Scholar 

  • Karabatsos G, Leisen F (2018) Approximate likelihood perspective on ABC methods. Stat Surv 12:66–104

    Article  MathSciNet  Google Scholar 

  • Keilson J, Wellner JA (1978) Oscillating Brownian motion. J Appl Probab 15(2):300–310

    Article  MathSciNet  Google Scholar 

  • Kubilius K, Mishura Y, Ralchenko K (2017) Estimation in fractional diffusion models. Bocconi and Springer Series, English Edition

  • Lejay A, Pigato P (2018) Statistical estimation of the oscillating Brownian motion. Bernoulli 24:3568–3602

    Article  MathSciNet  Google Scholar 

  • Lejay A, Pigato P (2019) A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data. Int J Theor Appl Finance 22(04):1950017

    Article  MathSciNet  Google Scholar 

  • Marin JM, Pudlo P, Robert C, Ryder R (2012) Approximate Bayesian computational methods. Stat Comput 22:1167–1180

    Article  MathSciNet  Google Scholar 

  • Nualart D (2006) Malliavin calculus and related topics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Peters GW, Fan Y, Sisson SA (2012) On sequential Monte Carlo, partial rejection control and approximate Bayesian computation. Stat Comput 22:1209–1222

    Article  MathSciNet  Google Scholar 

  • Peters GW, Panayi E, Septier F (2018) Sequential Monte Carlo-ABC methods for estimation of stochastic simulation models of the limit order book. In: Sisson SA, Fan Y, Beaumont MA (eds) Handbook of approximate Bayesian computation. Chapman and Hall/CRC Press, Boca Raton, pp 437–480

    Chapter  Google Scholar 

  • Picchini U (2014) Inference for SDE models via approximate Bayesian computation. J Comput Graph Stat 23:1080–1100

    Article  MathSciNet  Google Scholar 

  • Prakasa Rao BLS (2010) Statistical inference for fractional diffusion processes

  • Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW (1999) Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol Biol Evol 16:1791–1798

    Article  Google Scholar 

  • Shirota S, Gelfand A (2017) Approximate Bayesian computation and model validation for repulsive spatial point processes. J Comput Graph Stat 26(3):646–657

    Article  Google Scholar 

  • Sottinen T (2001) Fractional Brownian motion, random walks and binary market models. Finance Stoch 5:343–355

    Article  MathSciNet  Google Scholar 

  • Tavare S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring coalescence times from DNA sequence data. Genetics 145:505–518

    Article  Google Scholar 

  • Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6:187–202

    Article  Google Scholar 

  • Torres S, Viitasaari L (2019) Stochastic Differential Equations with Discontinuous Diffusion. https://arxiv.org/abs/1908.03183

Download references

Acknowledgements

This research was partially supported by Project ECOS - CONICYT C15E05, REDES 150038 and MATHAMSUD 19-MATH-06 SARC. Héctor Araya was partially supported by Proyecto FONDECYT Post-Doctorado 3190465, Soledad Torres was partially supported by FONDECYT Grant 1171335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Araya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya, H., Slaoui, M. & Torres, S. Bayesian inference for fractional Oscillating Brownian motion. Comput Stat 37, 887–907 (2022). https://doi.org/10.1007/s00180-021-01146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-021-01146-8

Keywords

Navigation