Skip to main content
Log in

A new estimation for INAR(1) process with Poisson distribution

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The first-order Poisson autoregressive model may be suitable in situations where the time series data are non-negative integer valued. In this article, we propose a new parameter estimator based on empirical likelihood. Our results show that it can lead to efficient estimators by making effective use of auxiliary information. As a by-product, a test statistic is given, testing the randomness of the parameter. The simulation values show that the proposed test statistic works well. We have applied the suggested method to a real count series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Osh MA, Aly EEAA (1992) First order autoregressive time series with negative binomial and geometric marginals. Commun Stat Theory Methods 21:2483–2492

    Article  MathSciNet  Google Scholar 

  • Al-Osh MA, ALZAID AA (1987) First-order integer-valued autoregressive (INAR(1)) process. J Time 8:261–275

    MathSciNet  MATH  Google Scholar 

  • Alzaid A, Al-Osh M (1988) First-Order Integer-Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties. Stat Neerlandica 42:53–61

    Article  MathSciNet  Google Scholar 

  • Awale M, Balakrishna N, Ramanathan TV (2019) Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model. Stat Papers 60:1515–1539

    Article  MathSciNet  Google Scholar 

  • Bourguignon M, Vasconcellos KLP (2015) Improved estimation for poisson INAR(1) models. J Statal Comput Simul 85:2425–2441

    Article  MathSciNet  Google Scholar 

  • Freeland RK, Mccabe BPM (2004) Analysis of low count time series data by Poisson autoregression. J Time Series Anal 25:701–722

    Article  MathSciNet  Google Scholar 

  • Kang J, Lee S (2009) Parameter change test for random coefficient integer-valued autoregressive processes with application to polio data analysis. J Time Series Anal 30:239–258

    Article  MathSciNet  Google Scholar 

  • Keith Freeland R, McCabe B (2005) Asymptotic properties of CLS estimators in the Poisson AR(1) model. Stat Probab Lett 73:147–153

    Article  MathSciNet  Google Scholar 

  • Owen A (1991) Empirical likelihood for linear models. Annals Stat 19:1725–1747

    MathSciNet  MATH  Google Scholar 

  • Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75:237–249

    Article  MathSciNet  Google Scholar 

  • Owen AB (2001) Empirical likelihood. Chapman and Hall, London

    MATH  Google Scholar 

  • Qin J, Lawless J (1994) Empirical likelihood and general estimating equations. Annals Stat 22:300–325

    Article  MathSciNet  Google Scholar 

  • Qin J, Lawless J (1995) Estimating equations, empirical likelihood and constraints on parameters. Canadian J Stat / La Revue Canadienne de Statistique 23:145–159

    Article  MathSciNet  Google Scholar 

  • Steutel F, Van Harn K (1979) Discrete analogues of self-decomposability and stability. Annals Probab 74:893–899

    MathSciNet  MATH  Google Scholar 

  • Weiss CH (2017) An introduction to discrete-valued time series. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Zhang H, Wang D, Zhu F (2011a) The empirical likelihood for first-order random coefficient integer-valued autoregressive processes. Commun Stat Theory Methods 40:492–509

    Article  MathSciNet  Google Scholar 

  • Zhang H, Wang D, Zhu F (2011) Empirical likelihood inference for random coefficient INAR(p) process. J Time Series Anal 32:195–203

    Article  MathSciNet  Google Scholar 

  • Zhao Z, Hu Y (2015) Statistical inference for first-order random coefficient integer-valued autoregressive processes. J Inequal Appl 2015:359

    Article  MathSciNet  Google Scholar 

  • Zhao Z, Yu W (2016) Empirical Likelihood Inference for First-Order Random Coefficient Integer-Valued Autoregressive Processes. Math Probl Eng 2016:1–8

    MathSciNet  MATH  Google Scholar 

  • Zheng H, Basawa IV, Datta S (2007) First-order random coefcient integer-valued autoregressive processes. J Stat Plann Inference 137:212–229

    Article  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (No. 11871028, 11731015, 11901053), Natural Science Foundation of Jilin Province (No. 20180101216JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1 The proof follows essentially the lines of the classical proof of Owen (2001) for the i.i.d. case, which may be applied when the following three conditions are satisfied. Let \(S({{\varvec{\theta }}})=\frac{1}{n}\sum _{t=1}^n {\varvec{m}}_t({{\varvec{\theta }}})m_t({{\varvec{\theta }}})'.\)

(C1) \(S({{\varvec{\theta }}}_0) \rightarrow {\varvec{\Sigma }}\) in probability and \({\varvec{\Sigma }}\) positive definite.

(C2) \(m_n^\star =\max _{1\le t\le n}\Vert {\varvec{m}}_t({{\varvec{\theta }}}_0)\Vert =o_p(n^{1/2})\).

(C3) \(\frac{1}{n}\sum _{t=1}^n \Vert {\varvec{m}}_t({{\varvec{\theta }}}_0)\Vert ^3=o_p(n^{1/2}),\) where \({{\varvec{\theta }}}_0\) is the true value of the parameter.

For the first condition, let \(\mathcal F_n=\sigma (X_0,X_1,\ldots ,X_n), A_n=\sum _{t=1}^n m_{1t}(\theta _0)=\sum _{t=1}^n(X_t-\phi _0 X_{t-1}-\lambda _0),A_0=0,\) then,

$$\begin{aligned} E(A_n|\mathcal F_{n-1})=A_{n-1}+E(X_n-\phi _0 X_{n-1}-\lambda _0)=A_{n-1}, \end{aligned}$$

so, \(\{A_n, \mathcal F_n, n\ge 0\}\) is a martingale. For \(E|X_t|^2<\infty ,\) \(\{(X_t-\phi _0 X_{t-1}-\lambda _0)^2, n\ge 1\}\) is square integrable. By the strictly stationary and ergodic theorem,

$$\begin{aligned} \displaystyle \frac{\;1\;}{\;n\;}\sum \limits _{t=1}^n(X_t-\phi _0 X_{t-1}-\lambda _0)^2 {\mathop {\longrightarrow }\limits ^{a.s}} E(X_1-\phi _0 X_0-\lambda _0)^2. \end{aligned}$$

Similarly, we can proof that \(B_n=\sum _{t=1}^nm_{2t}({{\varvec{\theta }}}_0), C_n=\sum _{t=1}^n m_{3t}(\theta _0)\) are martingale. Then the first condition holds. To check the second condition, we note that \(E\{{\varvec{m}}_t({{\varvec{\theta }}}_0)/{\varvec{m}}_t({{\varvec{\theta }}}_0)\}<\infty ,\) then, \(\sum _{n=1}^\infty P({\varvec{m}}_t({{\varvec{\theta }}}_0)'\) \({\varvec{m}}_t({{\varvec{\theta }}}_0)>n)<\infty .\) By the Borel-Cantelli lemma, \(\Vert {\varvec{m}}_t({{\varvec{\theta }}}_0)\Vert >\sqrt{n}\) happens with probability 1 only for finitely many n, since \(\{X_t\}\) is a strictly stationary process. This implies that there are only finitely many n for which \(m_n^\star >\sqrt{n}.\) Similarly, for any \(\varepsilon >0,\) there are only finitely many n for which \(m_n^\star >\varepsilon \sqrt{n},\) hence \(\lim \sup _{n\rightarrow \infty }m_n^\star /\sqrt{n}\le \varepsilon \) holds with probability 1, so \(m_n^\star =o_p(\sqrt{n}).\) From the (C1) and (C2), we have \(\frac{\;1\;}{\;n\;}\sum _{t=1}^n \Vert {\varvec{m}}_t({{\varvec{\theta }}}_0)\Vert ^3\le m_n^\star \frac{\;1\;}{\;n\;}\sum _{t=1}^n {\varvec{m}}_t({{\varvec{\theta }}}_0){\varvec{m}}_t({{\varvec{\theta }}}_0)' = o_p(\sqrt{n})O_p(1)=o_p(n^{1/2}).\) See Zhang et al. (2011a) and Zhao and Yu (2016) also.

Proof of Theorem 2 The proof is similar to that of Theorem 6.2 of Zhang et al. (2011a) and that of Theorem 1 of Qin and Lawless (1994). Let

$$\begin{aligned} Q_{1n}({{\varvec{\theta }}},{\varvec{\beta }})=\frac{1}{n}\sum \limits _{t=1}^n \frac{{\varvec{m}}_t({{\varvec{\theta }}})}{1+{\varvec{\beta }}'{\varvec{m}}_t({{\varvec{\theta }}})},\quad Q_{2n}({{\varvec{\theta }}},{\varvec{\beta }})=\frac{1}{n}\sum \limits _{t=1}^n \frac{{\varvec{\beta }}({{\varvec{\theta }}})}{1+{\varvec{\beta }}'{\varvec{m}}_t({{\varvec{\theta }}})}\left( \frac{\partial {\varvec{m}}_t({{\varvec{\theta }}})}{\partial {{\varvec{\theta }}}}\right) '. \end{aligned}$$

Expanding \(Q_{1n}(\check{{\varvec{\theta }}}, \check{{\varvec{\beta }}}),Q_{2n}(\check{{\varvec{\theta }}},\check{{\varvec{\beta }}})\) at \(({{\varvec{\theta }}}_0,0),\) we have

$$\begin{aligned} 0= & {} Q_{1n}(\check{{\varvec{\theta }}},\check{{\varvec{\beta }}})=Q_{1n}({{\varvec{\theta }}}_0,0)+\frac{\partial Q_{1n}({{\varvec{\theta }}}_0,0)}{\partial {{\varvec{\theta }}}}(\check{{\varvec{\theta }}}-{{\varvec{\theta }}}_0)+\frac{\partial Q_{1n}({{\varvec{\theta }}}_0,0)}{\partial {\varvec{\beta }}'}(\check{{\varvec{\beta }}}-0)+o_p(\delta _n), \\ 0= & {} Q_{2n}(\check{{\varvec{\theta }}},\check{{\varvec{\beta }}})=Q_{2n}({{\varvec{\theta }}}_0,0)+\frac{\partial Q_{2n}({{\varvec{\theta }}}_0,0)}{\partial {{\varvec{\theta }}}}(\check{{\varvec{\theta }}}-{{\varvec{\theta }}}_0)+\frac{\partial Q_{2n}({{\varvec{\theta }}}_0,0)}{\partial {\varvec{\beta }}'}(\check{{\varvec{\beta }}}-0)+o_p(\delta _n), \end{aligned}$$

where \(\delta _n=\Vert \check{{\varvec{\theta }}}-{{\varvec{\theta }}}_0\Vert +\Vert \check{{\varvec{\beta }}}\Vert =O_p(n^{-1/2}).\) So, we have

$$\begin{aligned} S_n\left( \begin{array}{c} \check{{\varvec{\beta }}}\\ \check{{\varvec{\theta }}}-{{\varvec{\theta }}}_0 \end{array}\right) =\left( \begin{array}{c} -Q_{1n}({{\varvec{\theta }}}_0,0)+o_p(\delta _n)\\ o_p(\delta _n) \end{array}\right) . \end{aligned}$$

where

$$\begin{aligned} S_n=\left( \begin{array}{cc} \frac{\partial Q_{1n}}{\partial {\varvec{\beta }}'} &{}\frac{\partial Q_{1n}}{\partial {{\varvec{\theta }}}}\\ \frac{\partial Q_{2n}}{\partial {\varvec{\beta }}'} &{}0 \end{array}\right) _{({{\varvec{\theta }}}_0,0)} \rightarrow \left( \begin{array}{cc} -E(m_{t}m_{t}') &{}E\left( \frac{\partial {\varvec{m}}_t}{\partial {{\varvec{\theta }}}}\right) \\ E\left( \frac{\partial {\varvec{m}}_t}{\partial {{\varvec{\theta }}}}\right) ' &{}0 \end{array}\right) = \left( \begin{array}{cc} -{\varvec{\Sigma }}&{}{\varvec{\Omega }}\\ {\varvec{\Omega }}'&{}0 \end{array}\right) . \end{aligned}$$

since \(\{X_t\}\) is strictly stationary and ergodic and note that \(\sqrt{n} Q_{1n}({{\varvec{\theta }}}_0,0)=\frac{1}{\sqrt{n}}\sum _{t=1}^n m_{t}({{\varvec{\theta }}}_0){\mathop {\longrightarrow }\limits ^{d}} N(0,{\varvec{\Sigma }}).\) Then, we have

$$\begin{aligned} \sqrt{n}(\check{{\varvec{\theta }}}-{{\varvec{\theta }}}_0)=({\varvec{\Omega }}'{\varvec{\Sigma }}^{-1}{\varvec{\Omega }})^{-1}{\varvec{\Omega }}'{\varvec{\Sigma }}^{-1}\sqrt{n} Q_{1n}({{\varvec{\theta }}}_0,0)+o_p(1). \end{aligned}$$

The proof of the theorem is completed.

Proof of Theorem 3: The proof is similar to that of Theorem 2 and Corollary 4 of Qin and Lawless (1994) and will be only sketched here.

Note that

$$\begin{aligned} \ell (\check{{\varvec{\theta }}},\check{{\varvec{\beta }}}) =\sum \limits _{t=1}^n\log [1+\check{{\varvec{\beta }}}{\varvec{m}}_t(\check{{{\varvec{\theta }}}})] =\frac{n}{2}\left[ \frac{1}{n}\sum \limits _{t=1}^n {{\varvec{m}}_t({{\varvec{\theta }}}_0)'}\right] {\varvec{A}} \left[ \frac{1}{n}\sum \limits _{t=1}^n {{\varvec{m}}_t({{\varvec{\theta }}}_0)}\right] +o_p(1), \end{aligned}$$

where \({\varvec{A}}={\varvec{\Sigma }}^{-1}[{\varvec{I}}-{\varvec{\Omega }}[{\varvec{\Omega }}'{\varvec{\Sigma }}^{-1}{\varvec{\Omega }}]^{-1}{\varvec{\Omega }}'{\varvec{\Sigma }}^{-1}].\) Thus,

$$\begin{aligned} 2\ell (\check{{\varvec{\theta }}})&=[{\varvec{\Sigma }}^{-1/2}\sqrt{n} Q_{1n}({{\varvec{\theta }}}_0,0)]' [{\varvec{I}}-{\varvec{\Sigma }}^{-1/2}{\varvec{\Omega }}[{\varvec{\Omega }}'{\varvec{\Sigma }}^{-1}{\varvec{\Omega }}]^{-1}{\varvec{\Omega }}'{\varvec{\Sigma }}^{-1/2}] [{\varvec{\Sigma }}^{-1/2}\\&\quad \sqrt{n} Q_{1n}({{\varvec{\theta }}}_0,0)]+o_p(1), \end{aligned}$$

Note that \(({\varvec{\Sigma }})^{-1/2}{\sqrt{n}}Q_{1n}({{\varvec{\theta }}}_0,0)\) converges to a standard multivariate normal distribution and the matrix \({\varvec{I}}-{\varvec{\Sigma }}^{-1/2}{\varvec{\Omega }}[{\varvec{\Omega }}'{\varvec{\Sigma }}^{-1}{\varvec{\Omega }}]^{-1}{\varvec{\Omega }}'{\varvec{\Sigma }}^{-1/2}\) is symmetric and idempotent, with trace equal to 1. Hence the test statistic \(2\ell (\check{{{\varvec{\theta }}}})\) converges to \(\chi ^2(1).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, F., Wang, D. A new estimation for INAR(1) process with Poisson distribution. Comput Stat 37, 1185–1201 (2022). https://doi.org/10.1007/s00180-021-01157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-021-01157-5

Keywords

Navigation