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Abstract
We develop two new classes of tests for the Weibull distribution based on Stein’s
method. The proposed tests are applied in the full sample case as well as in the
presence of random right censoring. We investigate the finite sample performance
of the new tests using a comprehensive Monte Carlo study. In both the absence and
presence of censoring, it is found that the newly proposed classes of tests outperform
competing tests against the majority of the distributions considered. In the cases where
censoring is present we consider various censoring distributions. Some remarks on the
asymptotic properties of the proposed tests are included. We present another result of
independent interest; a test initially proposed for use with full samples is amended
to allow for testing for the Weibull distribution in the presence of censoring. The
techniques developed in the paper are illustrated using two practical examples.

Keywords Goodness-of-fit testing · Hypothesis testing · Random right censoring ·
Warp-speed bootstrap · Weibull distribution

1 Introduction

The Weibull distribution is often used in survival analysis as well as reliability the-
ory, see e.g., Kalbfleisch and Prentice (2011). This flexible distribution is a popular
model which allows for constant, increasing and decreasing hazard rates. TheWeibull
distribution is also frequently applied in various engineering fields, including elec-
trical and industrial engineering to represent, for example, manufacturing times, see
Jiang and Murthy (2011). As a result of its wide range of practical uses, a number of
goodness-of-fit tests have been developed for the Weibull distribution; see e.g, Mann
et al. (1973), Tiku and Singh (1981), Liao and Shimokawa (1999), Cabaña and Quiroz
(2005) as well as Krit (2014).
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The papers listed above deal with testing for the Weibull distribution in the full
sample case; i.e., where all lifetimes are observed. However, random right censoring
often occurs in the fields mentioned above. For example, we may study the duration
that antibodies remain detectable in a patient’s blood after receiving a specific type
of Covid-19 vaccine, i.e. the duration of the protection that the vaccine affords the
recipient. When gathering the relevant data, we will likely not be able to measure this
duration in all of the patients. For example, some may leave the study by emigrating
to a different country while still having detectable antibodies. In this case, the exact
time of interest is not observed. This situation is referred to as random right censoring,
see e.g., Cox and Oakes (1984).

In the presence of censoring, testing the hypothesis that the distribution of the
lifetimes is Weibull is complicated by the fact that an incomplete sample is observed.
Balakrishnan et al. (2015) suggests a way to perform the required goodness-of-fit tests
by transforming the censored sample to a complete sample. Another approach is to
modify the test statistics used in the full sample case to account for the presence of
censoring. Although fewer in number, tests for theWeibull distribution in the presence
of random censoring are available in the literature. For example, Koziol and Green
(1976) and Kim (2017) propose modified versions of the Cramér-von Mises test and
the test proposed in Liao and Shimokawa (1999), respectively, for use with censored
data.

Throughout this paperwe are primarily interested in the situationwhere censoring is
present; the results relating to the full sample case are treated as special cases obtained
when all lifetimes are observed. Before proceeding some notation is introduced. Let
X1, . . . , Xn be independent and identically distributed (i.i.d.) lifetime variables with
continuous distribution function F and let C1, . . . ,Cn be i.i.d. censoring variables
with distribution function H , independent of X1, . . . , Xn .We assume non-informative
censoring throughout. Let

Tj = min(X j ,C j ) and δ j =
{
1, if X j ≤ C j ,

0, if X j > C j .

Note that in the full sample case Tj = X j and δ j = 1 for j = 1, . . . , n.
Based on the observed pairs (Tj , δ j ), j = 1, . . . n we wish to test the composite

hypothesis

H0 : X ∼ Weibull(λ, θ), (1)

for some unknown λ > 0 and θ > 0. Here X ∼ Weibull(λ, θ) refers to a Weibull
distributed random variable with distribution function

F(x) = 1 − e−(x/λ)θ , x > 0.

This hypothesis is to be tested against general alternatives. We will make use of
maximum likelihood estimation to estimate λ and θ . The log-likelihood of theWeibull
distribution is
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L(θ, λ|X1, . . . , Xn) = d log(θ) − dθ log(λ) + (θ − 1)
n∑
j=1

δ j log(X j ) − λ−θ
n∑
j=1

X θ
j ,

where d = ∑n
j=1 δ j . In the full sample case d = n. No closed form formulae for

the maximum likelihood estimates λ̂ and θ̂ exist, meaning that numerical optimisation
techniques are required to arrive at parameter estimates.

Since the Weibull distribution has a shape parameter the first step for many
goodness-of-fit tests for the Weibull distribution is to transform the data. If X ∼
Weibull(λ, θ) then a frequently used transformation is log(X), which results in a
random variable that is type I extreme value distributed with parameters log(λ) and
1/θ . The resulting transformed randomvariable is part of a location scale family,which
is a desirable result when performing goodness-of-fit testing. We therefore have that
if X ∼ Weibull(λ, θ), then X (t) = θ(log(X) − log(λ)) follows a standard type I
extreme value distribution with distribution function

G(x) = 1 − e−ex , −∞ < x < ∞.

We denote a random variable with this distribution function by EV (0, 1). As a result
the hypothesis in (1) holds, if, and only if, X (t) ∼ EV (0, 1). All of the test statistics
considered make use of the transformed observed values

Y j = θ̂
[
log(Tj ) − log(λ̂)

]
, (2)

with λ̂ and θ̂ the maximum likelihood estimates of the Weibull distribution. Let

X (t)
j = θ̂

[
log(X j ) − log(λ̂)

]
.

If X1, . . . , Xn are realised from a Weibull(λ, θ) distribution, then X (t)
1 , . . . , X (t)

n will
approximately follow an EV (0, 1) distribution see e.g. Kotz and Nadarajah (2000).
The resulting randomvariables are no longer independent. However, several properties
of the classical testing procedures remain unaffected when performing this type of
transformation; the interested reader is referred to Baringhaus and Henze (1991) as
well asGupta andRichards (1997) and the references therein formore details. The tests
employed below are based on discrepancy measures between the calculated values of
Y1, . . . ,Yn and the standard type I extreme value distribution. The order statistics
of Y1, . . . ,Yn are denoted by Y(1) < · · · < Y(n), while δ( j) represents the indicator
variable corresponding to Y( j).

The remainder of the paper is structured as follows. In Sect. 2, we propose two
new classes of tests for the Weibull distribution for both the full sample and censored
case. We also modify the test proposed in Krit (2014) to accommodate random right
censoring. In the presence of censoring the null distribution of all the test statistics
considered depend on the unknown censoring distribution, we therefore propose a
parametric bootstrap procedure in Sect. 2 in order to compute critical values. Section
3 presents the results of a Monte Carlo study where the empirical powers of the newly
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proposed classes of tests as well as the newly modified test are compared to those
of existing tests. The paper concludes in Sect. 4 with two practical applications; one
concerning the survival times of patients diagnosed with a certain type of leukemia
(no censoring is present in these data) and the other relates to observed leukemia
remission times (in the presence of censoring). Some avenues for future research are
also discussed.

2 Proposed test statistics

Our newly proposed classes of tests are based on the following theorem, which char-
acterises the standard type I extreme value distribution.

Theorem 1 Let W be a random variable with absolutely continuous density and
assume that E

[
eW
]

< ∞. In this case W ∼ EV (0, 1), if, and only if,

E
[(

i t + 1 − eW
)
eitW

]
= 0, ∀ t ∈ R,

with i = √−1.

Proof The ’if’ part of the theorem can easily be shown using direct calculation. The
’only if’ part is shown below.

Assume E
[(
i t + 1 − eW

)
ei tW

] = 0. From Fourier analysis we have that the
Fourier transform of f ′(w) is ei tw f ′(w) = −i t E[ei tW ]. This implies that

0 = E
[(

i t + 1 − eW
)
ei tW

]
=
∫ ∞

−∞
(
i t + 1 − ew

)
ei tw f (w)dw

=
∫ ∞

−∞
[− f ′(w) + (1 − ew

)
f (w)

]
ei twdw,

which is the Fourier transform of h(w) := − f ′(w) + (1 − ew) f (w). The fact that
the Fourier transform of h is 0 implies that h(w) = 0 for all w ∈ R. Thus, f satisfies
the following differential equation f ′(w) − (1 − ew) f (w) = 0. Using separation of
variables we have

f ′(w)

f (w)
= 1 − ew 	⇒ log( f (w)) = w − ew + c 	⇒ f (w) = ew−ew ,

where the last step follows from the fact that f must be a density function and hence
integrate to 1. This completes the proof. ��

Let w(t) be a non-negative, symmetric weight function. From Theorem 1, we have
that
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η =
∫ ∞

−∞
E
[(

i t + 1 − eY
)
ei tY
]
w(t)dt

=
∫ ∞

−∞

∫ ∞

−∞
(
i t + 1 − ey

)
ei t ydG(y)w(t)dt (3)

equals 0 if Y ∼ EV (0, 1). Note that the inclusion of the weight function, w, above is
required to ensure that η is finite. Clearly η will be unknown because G is unknown.
However, G can be estimated by the Kaplan-Meier estimator, Gn , of the distribution
function given by

1 − Gn(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, t ≤ Y(1)∏k−1

j=1

(
n− j

n− j+1

)δ( j)
, Y(k−1) < t ≤ Y(k), k = 2, . . . , n.∏n

j=1

(
n− j

n− j+1

)δ( j)
, t > Y(n).

More details about this estimator can be found in Kaplan and Meier (1958), Efron
(1967) as well as Breslow and Crowley (1974). In the full sample case this estimator
reduces to the standard empirical distribution function, Gn(X( j)) = j/n.

Let Δ j denote the size of the jump in Gn(T( j));

Δ j = Gn(T( j)) − lim
t↑T( j)

Gn(t), j = 1, . . . , n.

Simple calculable expressions for the Δ j ’s are

Δ1 = δ(1)

n
, Δn =

n−1∏
j=1

(
n − j

n − j + 1

)δ( j)

and

Δ j =
j−1∏
k=1

(
n − k

n − k + 1

)δ(k)

−
j∏

k=1

(
n − k

n − k + 1

)δ(k)

= δ( j)

n − j + 1

j−1∏
k=1

(
n − k

n − k + 1

)δ(k)

, j = 2, . . . , n − 1.

In the full sample case Δ j = 1/n, j = 1, . . . , n.
Estimating G by Gn in (3), we propose the test statistic

Sn,a = n
∫ ∞

−∞

∣∣∣∣∣∣
n∑
j=1

Δ j

[
i tei tY j + (1 − eY j )ei tY j

]∣∣∣∣∣∣
2

wa(t)dt, (4)

where wa(t) is a weight function containing a user-defined tuning parameter a > 0.
The null hypothesis in (1) is rejected for large values of Sn,a .
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Straightforward algebra shows that, if wa(t) = e−at2 , then the test statistic simpli-
fies to

S(1)
n,a = n

√
π

a

n∑
j=1

n∑
k=1

Δ jΔke
−(Y j−Yk )2/4a

{
− 1

4a2

(
(Y j − Yk)

2 − 2a
)

+ 2
(
1 − eY j

)( 1

2a

) (
Y j − Yk

)+
(
1 − eY j

) (
1 − eYk

)}
,

and if wa(t) = e−a|t | the test statistic has the following easily calculable form

S(2)
n,a = n

n∑
j=1

n∑
k=1

Δ jΔk

{
−4a

(
3(Y j − Yk)2 − a2

)
(
(Y j − Yk)2 + a2

)3
+ 8a(Y j − Yk)

(
1 − eY j

)
(
(Y j − Yk)2 + a2

)2 + 2a
(
1 − eY j

) (
1 − eYk

)
(Y j − Yk)2 + a2

}
.

New goodness-of-fit tests containing a tuning parameter are often accompanied by a
recommendedvalue of this parameter; this choice is typically based on thefinite sample
power performance of the test. Another approach which may be used is to choose the
value of the tuning parameter data-dependently; see e.g., Allison and Santana (2015).
In this paper, we opt to use the values recommended in the literature for tests containing
a tuning parameter.

The weight functions specified above correspond to scaled Gaussian and Laplace
kernels. Theseweight functions are popular choices found in the goodness-of-fit litera-
ture; see e.g., Meintanis and Iliopoulos (2003), Allison et al. (2017), Betsch and Ebner
(2018), Betsch and Ebner (2019) as well as Henze and Visagie (2020). The popularity
of these weight functions is, at least in part, due to the fact that their inclusion typically
results in simple calculable forms for L2-type statistics which do not require numerical
integration. As an alternative to the weight functions used, one may employ a symmet-
ric uniform kernel as a weight function; see e.g., Fernández et al. (2008). However,
in the mentioned paper, the authors found that the computational time required for
the test statistic obtained using the symmetric uniform kernel was substantial. This,
coupled with the simple computational forms obtained using the weight functions
defined above and the favourable power performance discussed in Sect. 3, motivated
us to restrict our attention to the scaled Gaussian and Laplace kernels.

Although we do not derive the asymptotic results related to the proposed classes of
test statistics we include some remarks in this regard. Sn,a is a characteristic function
based weighted L2-type statistic. The asymptotic properties of this class of statistics,
in the complete sample case, are studied in detail in Feuerverger and Mureika (1977),
while more recent references include Baringhaus and Henze (1988), Klar andMeinta-
nis (2005) as well as Baringhaus et al. (2017). A convenient setting for the derivation
of the asymptotic properties of these tests is the separable Hilbert space of square
integrable functions. Typically, the asymptotic null distribution of Sn,a corresponds to
that of

∫∞
−∞ |Z(t)|2 wa(t)dt =: Sa , where Z(·) is a zero-mean Gaussian process. The

123



New classes of tests for the Weibull distribution… 1757

distribution of Sa is the same as that of
∑∞

j=1 λ jU j , where Uj are i.i.d. chi-squared
random variables with parameter 1 and where λ j are eigenvalues of an integral oper-
ator (see e.g., Allison et al. (2021)). These tests are consistent against a large class of
fixed alternative distributions. Additionally, these tests are frequently consitent against
contiguous alternatives converging to the null at a rate of n−1/2.

In the case of random censoring, very little asymptotic results are available in the
literature for test statistics of this type. Very recently, advances have been made in this
regard; see e.g., Cuparić and Milošević (2021), in which a test for exponentiality is
considered based on so-called inverse probability censoringweights, where the authors
derive the asymptotic properties of the given test. In addition Fernández and Rivera
(2020) studied Kaplan-Meier U - and V -statistics in order to derive some asymptotic
results relating to the lifetime distribution. Some of these results may be helpful in
deriving the asymptotic properties of the tests proposed in this paper in future research.

The null distribution of each of the test statistics considered depends on the unknown
censoring distribution, even in the case of a simple hypothesis, see D’Agostino and
Stephens (1986). Since we will not assume any known form of the censoring distribu-
tion, we propose the following parametric bootstrap algorithm to estimate the critical
values of the tests.

1. Basedon the pairs (Tj , δ j ), j = 1, . . . , n estimate θ andλby θ̂ and λ̂, respectively,
using maximum likelihood estimation.

2. Transform Tj to Y j using the transformation in (2) for j = 1, . . . , n.
3. Calculate the test statistic, say Wn := W (Y1, . . . ,Yn; δ1, . . . , δn).
4. Obtain a parametric bootstrap sample X∗

1, . . . , X
∗
n by sampling from a Weibull

distribution with parameters θ̂ and λ̂.
5. Obtain a non-parametric bootstrap sample, C∗

1 , . . . ,C
∗
n , by sampling from the

Kaplan-Meier estimate of the distribution of C (t)
j = θ̂

[
log(C j ) − log(λ̂)

]
.

6. Set

T ∗
j = min(X∗

j ,C
∗
j ) and δ∗

j =
{
1, if X∗

j ≤ C∗
j

0, if X∗
j > C∗

j .

7. Calculate θ̂∗ and λ̂∗ based on (T ∗
j , δ∗

j ), j = 1, . . . , n.

8. Obtain Y ∗
j = θ̂∗

[
log(T ∗

j ) − log(λ̂∗)
]
, j = 1, . . . , n.

9. Based on the pairs
(
Y ∗
j , δ

∗
j

)
, j = 1, . . . , n, calculate the value of the test statistic,

say W ∗
n := W (Y ∗

1 , . . . ,Y ∗
n ; δ∗

1 , . . . , δ
∗
n).

10. Repeat steps 4-9B times to obtainW ∗
1 , . . . ,W ∗

B . Obtain the order statistics,W
∗
(1) ≤

· · · ≤ W ∗
(B). The estimated critical value is then ĉn(α) = W ∗

�B(1−α)� where �c�
denotes the floor of c.

The algorithm provided above is quite general and can easily be amended in order to
test for any lifetime distribution in the presence of random censoring. In the absence
of censoring there is no need to implement this algorithm; in this case, the critical
values can be obtained via Monte Carlo simulation by sampling from any Weibull
distribution and effecting the transformation discussed above.

123



1758 E. Bothma et al.

3 Numerical results

In this section, we compare the power performances of the newly proposed tests
to those of existing tests via a Monte Carlo simulation study. The existing tests used
include the classical Kolmogorov-Smirnov (K Sn) andCramér-vonMises (CMn) tests.
These tests have been modified for use with censored data, see Koziol and Green
(1976). The test introduced in Liao and Shimokawa (1999) is considered in the case
of full samples. A modification making this test suitable for use with censored data is
proposed in Kim (2017); we denote the test statistic by LSn in both the full sample
and censored cases. The calculable forms of the test statistics mentioned above are

K Sn = max

[
max
1≤ j≤n

{
Gn(Y( j)) −

(
1 − e−eY j

)}
,

max
1≤ j≤n

{(
1 − e−eY j

)
− G−

n (Y( j))
}]

,

CMn = n

3
+ n

d+1∑
j=1

{
Gn

(
X (t)

j−1

) (
X (t)

j − X (t)
j−1

)

×
[
Gn

(
X (t)

j−1

)
−
(
X (t)

j + X (t)
j−1

)]}
,

LSn = 1√
n

n∑
j=1

⎛
⎝max

[
j/n − Gn(Y j ),Gn(Y j ) − ( j − 1)/n

]
√
Gn(Y j )

[
1 − Gn(Y j )

]
⎞
⎠ .

Krit (2014) proposes a test for the Weibull distribution in the full sample case. This
test compares the empirical Laplace transform of the random variables resulting from
the transformation in (2) to the Laplace transform of an EV (0, 1) random variable;
ψ(t) = Γ (1 − t) for t < 1. Let ψn be the empirical Laplace transform of the
transformedobservations, obtained using theKaplan-Meier estimate of the distribution
function;

ψn(t) =
∫ ∞

−∞
e−t xdGn(x) =

n∑
j=1

Δ je
−tY j . (5)

The resulting test statistic is

K R∗
n = n

∫
I
[ψn(t) − Γ (1 − t)]2 wa(t)dt, (6)

where wa(t) = eat−eat is a weight function, a a user-specified tuning parameter
and I some interval. Based on numerical considerations, Krit (2014) suggests that
I = (−1, 0] should be used. The quantity in (6) can be approximated by a Riemann
sum;
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K Rn = n
−1∑

k=−m

⎡
⎣ n∑

j=1

Δ je
−Y j k/m − Γ (1 − k/m)

⎤
⎦
2

eak/m−eak/m ,

where m is the number of points at which the integrand is evaluated. In the numerical
results shown below, we use a = −5 and m = 100 as recommended in Krit (2014).
In the full sample case, Gn , in (5), is taken to be the empirical distribution function.
Upon setting Δ j = 1/n we obtain the test statistic in Krit (2014).

For each of the tests considered above, the null hypothesis in (1) is rejected for
large values of the test statistics.

3.1 Simulation setting

In the numerical results presented below, we use a nominal significance level of 10%
throughout. Empirical powers are presented for sample sizes n = 50 and n = 100.
The empirical powers for complete and censored samples are reported; censoring
proportions of 10% and 20% are included. For each lifetime distribution considered,
we report the powers obtained using three different censoring distributions. The first
censoring distribution used is the exponential distribution, the parameter of which is
chosen so as to obtain the specified level of censoring. The second censoring distri-
bution used is the uniform distribution with support (0,m); again, m is chosen such
that the required censoring level is achieved. The final censoring distribution used is
the Koziol-Green model proposed in Koziol and Green (1976). Denote the survival
function of a given lifetime distribution by S. In this case, the Koziol-Green censoring
distribution, indexed by β, has survival function Sβ(t). It can be shown that the censor-
ing proportion is β/(1+ β). We chose the value of β so as to ensure that the required
level of censoring is achieved. The alternative lifetime distributions considered are
listed in Table 1. Note that each of the alternatives considered have the same support
as that of the Weibull distribution with the exception of the beta distribution which is
restricted to the unit interval (0, 1) (Tables 10, 11, 12 and 13).

The obtained empirical powers are presented in Tables 2, 3, 4, 5, 6, 7, 8 and 9.
These tables report the percentages of 50000 independent Monte Carlo samples that

Table 1 Density functions of the alternative distributions

Alternative Density Notation Support

Weibull θxθ−1 exp(−xθ ) W (θ) (0, ∞)

Gamma (Γ (θ))−1 xθ−1 exp(−x) Γ (θ) (0, ∞)

Lognormal
(
θx

√
2π
)−1

exp

(
−log2(x)

(
2θ2
)−1

)
LN (θ) (0, ∞)

Chi square
(
2θ/2Γ (θ/2)

)−1
xθ/2−1 exp(−x/2) χ2(θ) (0, ∞)

Beta xα−1(1 − x)θ−1Γ (α + θ) (Γ (α)Γ (θ))−1 β(α, θ) (0, 1)

Lindley θ2

θ+1 (1 + x) exp(−θx) Lind(θ) (0, ∞)
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Table 2 Estimated powers for the full sample case where n = 50

F K Sn CMn LSn K Rn S(1)
n,1 S(1)

n,2 S(1)
n,5 S(2)

n,1 S(2)
n,2 S(2)

n,5

W (0.5) 10 10 10 10 10 10 10 10 10 10

W (1) 10 10 10 10 10 10 10 10 10 10

W (1.5) 10 11 10 11 11 10 10 11 11 10

W (2) 10 10 9 10 10 10 10 10 10 10

Γ (2) 13 15 17 14 17 17 16 14 16 17

Γ (3) 17 20 25 19 24 25 24 18 22 25

LN (0.5) 50 62 70 63 72 76 76 51 68 76

LN (1) 50 61 70 63 73 77 77 51 69 77

χ2(8) 21 24 31 23 30 32 31 20 28 31

χ2(10) 23 28 35 27 34 36 35 23 31 36

β(1, 1) 69 81 92 90 85 87 88 80 86 89

β(0.5, 1) 70 81 93 91 86 88 88 80 86 89

Lind(0.5) 11 11 12 13 11 13 14 10 11 13

Lind(2) 10 10 11 11 11 11 11 10 10 11

Table 3 Heatmap of the estimated powers for the full sample case where n = 50

lead to the rejection of the null hypothesis, rounded to the nearest integer. For ease of
comparison, the highest power in each line is printed in bold. Tables 2 and 4 contain
the results relating to full samples. In order to ease visual comparison of the results
obtained, we include so called ”heatmaps”, see Döring and Cramer (2019), of these
results in Tables 3 and 5. For each test considered, Tables 6, 7, 8 and 9 show three
empirical powers against each lifetimedistribution, corresponding to the three different
censoring distributions used. In each case, the results for the exponential, uniform and
Koziol-Green models are shown in the first, second and third lines, respectively.

In order to reduce the computational cost associated with the numerical powers
a warp-speed bootstrap procedure, see Giacomini et al. (2013), is employed. This
methodology has been employed by a number of authors in the literature to compare
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Table 4 Estimated powers for the full sample case where n = 100

F K Sn CMn LSn K Rn S(1)
n,1 S(1)

n,2 S(1)
n,5 S(2)

n,1 S(2)
n,2 S(2)

n,5

W (0.5) 10 10 10 10 10 10 10 9 10 10

W (1) 10 10 10 10 10 10 10 10 10 10

W (1.5) 10 10 10 10 10 10 10 10 10 10

W (2) 10 9 10 10 10 10 10 9 10 10

Γ (2) 17 19 26 19 24 26 27 17 22 26

Γ (3) 26 31 41 31 39 43 45 24 35 44

LN (0.5) 77 88 94 90 95 97 98 78 93 97

LN (1) 78 88 93 90 95 97 98 78 93 97

χ2(8) 32 39 51 41 49 54 56 31 45 55

χ2(10) 36 44 58 46 56 62 64 34 51 63

β(1, 1) 94 98 100 100 99 99 99 99 99 100

β(0.5, 1) 94 98 100 100 99 99 99 99 99 99

Lind(0.5) 12 12 13 13 12 14 16 11 12 15

Lind(2) 11 11 11 11 11 11 12 10 11 12

Table 5 Heatmap of the estimated powers for the full sample case where n = 100

Monte Carlo performances; see e.g., Meintanis et al. (2018), Allison et al. (2019) as
well asMijburgh andVisagie (2020). The bootstrap algorithm inSect. 2 is implemented
to calculate the critical values used to obtain the results in Tables 6, 7, 8 and 9.

For S(1)
n,a and S(2)

n,a , we include numerical powers in the cases where a is set to 1, 2
and 5 in the full sample case and set to 0.75, 1 and 2 in the presence of censoring. The
difference between these two sets of choices is due to the fact that the newly proposed
tests exhibits higher powers in the presence of censoring if slightly smaller values
of a are used. All calculations are performed in R, see [44]. The LindleyR package
is used to generate samples from censored distributions, see Mazucheli et al. (2016).
Parameter estimation is performed using the parmsurvfit package, see Jacobson et al.
(2018), while the tables are produced using the Stargazer package, see Hlavac (2018).
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Table 6 Estimated powers for 10% censoring for a sample size of n = 50 with three different censoring
distributions

F K Sn CMn LSn K Rn S(1)
n,0.75 S(1)

n,1 S(1)
n,2 S(2)

n,0.75 S(2)
n,1 S(2)

n,2

W (0.5) 9 9 9 7 8 8 8 8 8 8

9 9 9 4 9 9 9 9 8 9

10 9 10 9 8 8 9 9 9 8

W (1) 9 9 9 9 8 8 10 9 9 8

9 9 9 8 8 8 10 9 9 8

9 9 9 9 8 8 9 9 9 8

W (1.5) 10 10 10 9 9 9 9 9 9 9

10 10 10 8 9 9 9 10 10 9

10 10 10 9 8 8 10 9 9 8

W (2) 9 10 10 8 9 9 9 9 9 9

10 10 10 9 9 9 10 10 9 9

9 10 10 9 8 9 9 9 9 8

Γ (2) 13 14 13 21 15 15 15 12 13 14

13 14 13 21 15 15 15 12 13 14

12 14 12 21 14 14 15 12 12 14

Γ (3) 17 19 18 29 21 22 23 15 17 21

16 19 17 28 20 21 21 14 16 20

16 19 17 29 20 20 20 14 16 19

LN (0.5) 46 56 57 64 64 67 69 36 46 63

45 56 57 63 64 66 68 36 46 62

43 54 56 64 61 63 63 35 44 59

LN (1) 43 54 53 56 60 62 58 34 43 58

42 53 49 48 58 59 53 31 41 56

44 54 56 64 61 63 63 35 44 59

χ2(8) 19 23 22 34 26 27 27 16 20 25

3.2 Simulation results

First, we consider the results associated with the full sample case, given in Tables 2
and 4, together with the heatmaps shown in Tables 3 and 5. All of the tests considered
attain the nominal size for both sample sizes used. The tests associated with the highest
powers are S(1)

n,2 and S(1)
n,5, although LSn and S(2)

n,5 also performs well. When analysing

complete samples, we recommend using S(1)
n,2 or S

(1)
n,5.

We now turn our attention to the powers achieved in the presence of censoring. The
size of the tests are maintained closely for all sample sizes for censoring proportions
of 10% and 20%, with the single exception of K Rm,a in the case of small sample sizes.
As expected, the powers generally increase with sample size and decrease marginally
as the censoring proportion increases.
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Table 6 continued

F K Sn CMn LSn K Rn S(1)
n,0.75 S(1)

n,1 S(1)
n,2 S(2)

n,0.75 S(2)
n,1 S(2)

n,2

19 22 21 33 26 26 27 16 19 25

19 22 21 34 24 25 24 16 18 23

χ2(10) 21 25 25 38 29 31 32 17 21 28

21 25 25 38 29 31 32 18 21 28

21 25 24 37 27 28 27 18 20 26

β(1, 1) 64 75 83 1 78 80 82 68 73 80

63 75 83 1 78 79 81 68 72 80

61 70 79 0 55 50 31 62 63 47

β(0.5, 1) 61 72 79 0 74 75 76 66 70 76

60 72 79 0 73 74 74 65 69 74

61 69 79 0 54 49 28 62 62 46

Lind(0.5) 10 11 12 8 10 10 11 9 9 9

10 11 12 8 10 10 12 9 9 10

10 10 12 8 9 10 11 9 9 9

Lind(2) 10 10 10 7 9 9 10 9 9 8

10 10 10 6 9 9 10 9 9 9

10 10 11 7 9 9 9 9 9 8

Table 7 Estimated powers for 20% censoring for a sample size of n = 50 with three different censoring
distributions

F K Sn CMn LSn K Rn S(1)
n,0.75 S(1)

n,1 S(1)
n,2 S(2)

n,0.75 S(2)
n,1 S(2)

n,2

W (0.5) 7 6 8 6 7 8 7 7 7 7

8 6 8 6 8 8 8 8 8 8

9 9 9 6 7 7 8 9 8 7

W (1) 8 8 9 6 7 7 7 8 8 7

8 8 8 7 8 8 8 8 8 8

8 8 9 6 7 7 7 8 8 7

W (1.5) 9 9 10 10 8 8 9 9 8 8

9 9 9 9 8 8 9 9 8 8

8 8 9 6 7 7 7 9 8 7

W (2) 9 9 10 8 8 8 9 9 9 8

9 9 9 10 8 8 9 9 9 8

8 8 9 7 7 7 8 8 8 7

Γ (2) 12 13 12 12 13 13 13 11 12 12

11 12 11 11 12 13 14 10 11 13

11 12 11 9 11 11 12 11 11 11

Γ (3) 15 17 16 12 19 19 19 14 15 18

15 17 16 15 18 18 18 13 14 18

13 16 15 10 15 15 14 13 14 15
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Table 7 continued

F K Sn CMn LSn K Rn S(1)
n,0.75 S(1)

n,1 S(1)
n,2 S(2)

n,0.75 S(2)
n,1 S(2)

n,2

LN (0.5) 40 50 52 24 57 59 58 32 41 55

40 50 50 20 56 57 53 31 40 53

35 45 48 16 49 49 42 29 37 46

LN (1) 34 45 44 17 45 45 37 27 34 42

32 42 34 21 37 37 33 21 28 35

35 45 48 16 50 50 42 29 36 46

χ2(8) 17 20 20 12 23 24 23 15 18 22

17 20 19 13 22 23 22 15 17 22

15 18 18 12 19 19 17 14 16 18

χ2(10) 20 23 23 14 26 27 27 16 19 26

19 22 22 14 26 27 26 16 19 25

17 21 20 12 21 21 19 16 18 20

β(1, 1) 55 67 74 34 70 71 73 59 64 71

55 66 72 32 68 69 69 58 63 68

51 51 64 0 19 9 0 49 44 6

β(0.5, 1) 50 59 64 19 56 54 47 52 55 53

48 54 61 3 39 32 12 48 48 29

51 51 64 0 19 9 0 48 43 6

Lind(0.5) 9 10 12 9 9 9 9 9 8 8

9 9 11 6 9 9 8 8 8 8

9 9 12 6 8 8 8 9 8 8

Lind(2) 8 8 10 6 7 7 7 8 8 7

8 8 9 6 8 8 7 8 8 7

9 9 10 6 7 7 7 8 8 7

Table 8 Estimated powers for 10% censoring for a sample size of n = 100 with three different censoring
distributions

F K Sn CMn LSn K Rn S(1)
n,0.75 S(1)

n,1 S(1)
n,2 S(2)

n,0.75 S(2)
n,1 S(2)

n,2

W (0.5) 10 10 9 6 7 7 7 8 8 7

9 9 9 7 8 8 8 8 8 8

10 10 10 10 9 8 9 10 9 8

W (1) 10 10 10 10 8 8 9 9 9 8

10 10 10 11 8 8 10 9 9 8

10 10 10 10 9 9 9 10 9 9

W (1.5) 10 10 10 9 9 9 9 10 10 9

10 10 10 9 9 9 9 9 9 8

10 10 10 11 8 8 9 9 9 8

W (2) 10 10 10 8 9 9 9 10 10 9
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Table 8 continued

F K Sn CMn LSn K Rn S(1)
n,0.75 S(1)

n,1 S(1)
n,2 S(2)

n,0.75 S(2)
n,1 S(2)

n,2

10 10 10 9 9 9 10 10 10 9

10 10 10 11 9 9 9 9 9 8

Γ (2) 17 19 19 18 21 22 23 14 16 20

17 19 18 18 20 21 22 14 16 20

17 18 18 15 19 20 21 14 16 19

Γ (3) 25 29 30 30 34 36 38 19 23 33

24 29 29 29 33 35 37 19 23 32

23 28 29 23 32 33 34 19 23 31

LN (0.5) 74 85 87 84 91 92 95 61 74 90

72 84 87 83 90 92 94 61 74 90

71 83 86 79 89 91 93 60 72 89

LN (1) 71 83 85 42 88 90 90 58 71 87

70 82 83 26 87 88 87 54 68 85

71 83 86 78 89 91 93 60 73 88

χ2(8) 30 36 38 38 43 45 49 22 28 41

30 36 38 37 42 45 48 23 28 41

29 34 36 28 39 42 43 22 27 38

χ2(10) 34 41 43 44 48 51 56 26 33 47

34 41 44 44 49 52 56 26 33 48

33 40 42 33 46 48 50 25 31 45

β(1, 1) 91 97 99 98 98 98 99 96 98 99

91 97 99 98 98 98 98 96 97 99

90 95 97 0 84 79 50 91 91 77

β(0.5, 1) 90 96 98 96 97 98 98 95 97 98

90 96 98 95 97 98 98 95 97 98

91 95 98 0 83 77 45 91 90 74

Lind(0.5) 11 11 13 10 11 11 13 10 10 10

11 11 13 11 10 11 12 10 10 10

11 11 13 11 10 11 12 10 10 10

Lind(2) 10 10 11 10 9 9 10 9 9 9

10 10 11 12 9 9 10 9 9 8

10 10 11 10 9 9 10 9 9 9

Comparing the results associated with a sample size of 50, we see that S(1)
n,1, K Rn

and LSn generally tend to provide the highest powers. However, it should be noted that
K Rn achieves very low power against certain alternatives; notably against the beta
distributions considered when the censoring distribution is the Kozoil-Green model.
When considering the empirical powers associated with samples of size 100, S(1)

n,2

exhibits the highest powers, followed by S(1)
n,1 and LSn .
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Table 9 Estimated powers for 20% censoring for a sample size of n = 100 with three different censoring
distributions

F K Sn CMn LSn K Rn S(1)
n,0.75 S(1)

n,1 S(1)
n,2 S(2)

n,0.75 S(2)
n,1 S(2)

n,2

W (0.5) 8 7 9 6 7 7 7 7 7 7

9 7 9 6 8 8 8 7 7 8

9 9 9 6 7 7 7 8 8 7

W (1) 9 9 9 6 7 7 7 8 8 7

8 8 8 7 7 8 8 7 7 8

9 9 9 6 7 7 7 8 8 7

W (1.5) 9 10 10 10 8 8 9 9 9 8

9 10 9 12 9 9 10 9 9 9

9 9 9 11 8 8 9 9 8 8

W (2) 10 10 10 8 9 9 9 9 9 8

10 10 10 10 8 8 9 9 9 8

9 9 9 6 7 7 7 9 8 7

Γ (2) 15 17 17 12 18 18 18 14 15 17

15 17 15 12 15 16 16 12 13 15

15 16 16 10 15 15 14 13 13 14

Γ (3) 23 27 28 17 30 32 32 18 22 29

22 26 26 15 28 29 29 17 20 27

20 24 25 12 23 24 21 17 19 22

LN (0.5) 67 80 83 57 86 88 90 55 68 85

65 79 82 37 85 87 87 53 66 83

61 76 80 18 81 82 79 51 63 78

LN (1) 61 75 77 20 76 76 67 47 59 72

43 50 49 26 45 45 37 30 37 42

44 52 54 38 55 56 56 39 45 54

χ2(8) 27 32 34 22 38 40 42 21 26 37

27 32 34 18 37 38 39 21 26 36

24 30 31 13 30 31 27 20 23 28

χ2(10) 31 38 40 26 44 47 49 24 30 43

23 26 27 22 29 30 31 19 22 28

21 24 25 19 26 27 27 18 20 26

β(1, 1) 87 95 96 84 96 97 97 93 95 97

87 94 96 81 96 96 97 92 94 97

85 85 91 0 23 8 0 78 68 5

β(0.5, 1) 86 91 92 73 93 93 93 89 92 94

86 89 89 49 87 86 80 86 87 86

85 85 91 0 24 8 0 78 68 5

Lind(0.5) 10 11 13 9 9 9 9 9 8 8

10 11 13 6 10 9 9 9 9 9

10 11 13 6 9 8 8 8 8 8

123



New classes of tests for the Weibull distribution… 1767

Table 9 continued

F K Sn CMn LSn K Rn S(1)
n,0.75 S(1)

n,1 S(1)
n,2 S(2)

n,0.75 S(2)
n,1 S(2)

n,2

Lind(0.5) 9 10 10 7 7 7 7 8 8 7

9 9 10 6 7 7 7 8 7 7

9 10 10 6 7 7 7 8 8 6

When compiling the numerical results, we also considered a wider range of values
for the tuning parameter a than those reported in the table. Although some power
variation is evident when varying a, the powers achieved by the newly proposed
classes of tests are not particularly sensitive to the choice of the tuning parameter a.
However, based on the observed numerical powers, we recommend using S(1)

n,2 when
testing the hypothesis in question in the presence of censoring.

4 Practical applications and conclusion

In this section, we apply the tests used in Sect. 3 to test the hypothesis in (1) based on
two real-world data sets. The first data set, reported in Table 10, contains the survival

Table 10 Survival times after leukemia diagnosis, in days

7, 47, 58, 74, 177, 232, 273, 285, 317, 429, 440, 445, 455, 468, 495, 497, 532, 571, 579, 581, 650, 702,

715, 779, 881, 900, 930, 968, 1077, 1109, 1314, 1334, 1367, 1534, 1712, 1784, 1877, 1886, 2045,

2056, 2260, 2429, 2509

Table 11 p-values associated with the various tests used in the full sample case

T est K Sn CMn LSn K Rn S(1)
n,1 S(1)

n,2 S(1)
n,5 S(2)

n,1 S(2)
n,2 S(2)

n,5

p-value 0.49 0.62 0.41 0.34 0.68 0.25 0.18 0.32 0.36 0.19

Table 12 Initial remission times of leukemia patients, in days

4, 5, 8, 8, 9, 10, 10, 10, 10, 10, 11, 12, 12, 12∗, 13, 14, 20, 20∗, 23, 23, 25, 25, 25, 28, 28, 28, 28, 29, 31,

31, 31, 32, 37, 40, 41, 41, 48, 48, 57, 62, 70, 74, 75, 89, 99, 100, 103, 124, 139, 143, 159∗, 161∗, 162,

169, 190∗, 195, 196∗, 197∗, 199∗, 205∗, 217∗, 219∗, 220, 245∗, 258∗, 269∗

Table 13 p-values associated with the various tests used in the censored case

T est K Sn CMn LSn K Rn S(1)
n,1 S(1)

n,2 S(1)
n,5 S(2)

n,1 S(2)
n,2 S(2)

n,5

p-value 0.03 0.04 0.01 0.28 0.13 0.28 0.41 0.66 0.82 0.73
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times, in days, of 43 Leukemia patients. For a discussion of the original data set
see Kotze and Johnson (1983) as well as Allison et al. (2017). This data set is not
subject to censoring, i.e. all lifetimes are observed. The second data set contains the
initial remission times of leukemia patients, in days; for more details see Lee and
Wang (2003), this data set can be found in Table 12. These data contains censored
observations, indicated using an asterisk. The original data were segmented into three
treatment groups. However, Lee and Wang (2003) showed that the data do not display
significant differences among the various treatments. As a result we treat the data as
i.i.d. realisations from a single, censored, lifetime distribution. All reported p-values
are estimated using one hunderd thousand bootstrap replications; these results are
displayed in Tables 11 and 13, respectively.

From the results of the practical example in Table 11 it is clear that none of the
tests reject the null hypothesis that the survival times after a leukemia diagnosis are
Weibull distributed at the 5% or 10% levels of significance. As a result, we conclude
that the Weibull distribution is an appropriate model for these data.

The results associated with the initial remission times, in Table 13, indicate that
K Sn , CMn and LSn reject the hypothesis in (1) at a 5% significance level. However,
none of the remaining 7 tests considered result in a rejection of the null hypothesis
at the 5% or 10% levels. We conclude that the Weibull distribution is likely to be
an appropriate model for the observed times. The data set under consideration was
also analysed in Bothma et al. (2020), where the null hypothesis of exponentiality
of the remission time was strongly rejected. The mentioned paper recommended that
a more flexible distribution be used when modelling these data. The results above
indicate that the additional flexibility of the Weibull (compared to the exponential)
distribution indeed ensures that the Weibull distribution is a more appropriate model
than the exponential for the initial remission times considered.

A number of interesting numerical phenomena are evident when considering the
powers of the various tests. It is clear that the achieved powers and, therefore, the null
distribution of the test statistic, is influenced by the shape of the censoring distribution.
The effect of the censoring distribution on the critical values of the tests seem not to
have been investigated in the literature to date. Some authors perform goodness-of-
fit testing by enforcing a parametric assumption on the censoring distribution, see
e.g., Kim (2017). An additional consideration that seems to have been neglected in the
literature is the effect on the null distribution of the test statistic, and hence the power of
the test, of a specific assumptionmade in the Kaplan-Meier estimate of the distribution
function. Some authors, in order to ensure that Gn satisfies the requirements of a
distribution, defines Gn(t) = 1 for all t > X(n) regardless of whether or not the
sample maximum is censored. We are currently investigating these open questions.
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