Skip to main content
Log in

Kernel regression for cause-specific hazard models with time-dependent coefficients

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Competing risk data appear widely in modern biomedical research. In the past two decades, cause-specific hazard models are often used to deal with competing risk data. There is no current study on the kernel likelihood method for the cause-specific hazard model with time-varying coefficients. We propose to use the local partial log-likelihood approach for nonparametric time-varying coefficient estimation. Simulation studies demonstrate that our proposed nonparametric kernel estimator performs well under assumed finite sample settings. And we also compare the local kernel estimator with the penalized spline estimator. Finally, we apply the proposed method to analyze a diabetes dialysis study with competing death causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Austin PC, Fine JP (2017) Accounting for competing risks in randomized controlled trials: a review and recommendations for improvement. Stat Med 36(8):1203–1209

    Article  MathSciNet  Google Scholar 

  • Bender R, Augustin T, Blettner M (2005) Generating survival times to simulate cox proportional hazards models. Stat Med 24(11):1713–1723

    Article  MathSciNet  Google Scholar 

  • Beyersmann J, Latouche A, Buchholz A, Schumacher M (2009) Simulating competing risks data in survival analysis. Stat Med 28(6):956–971

    Article  MathSciNet  Google Scholar 

  • Beyersmann J, Allignol A, Schumacher M (2012) Competing risks and multistate models with R. Springer, New York

    Book  MATH  Google Scholar 

  • Breslow N (1974) Covariance analysis of censored survival data. Biometrics 30(1):89–99

    Article  Google Scholar 

  • Cai Z, Sun Y (2003) Local linear estimation for time-dependent coefficients in cox’s regression models. Scand J Stat 30(1):93–111

  • Cai Z, Fan J, Li R (2000) Efficient estimation and inferences for varying-coefficient models. J Am Stat Assoc 95(451):888–902

    Article  MathSciNet  MATH  Google Scholar 

  • Cai J, Fan J, Jiang J, Zhou H (2007) Partially linear hazard regression for multivariate survival data. J Am Stat Assoc 102(478):538–551

    Article  MathSciNet  MATH  Google Scholar 

  • Chen K, Guo S, Sun L, Wang JL (2010) Global partial likelihood for nonparametric proportional hazards models. J Am Stat Assoc 105(490):750–760

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1992) Spatial and design adaptation: adaptive order polynomial approximation in function estimation. Institute of Statistics mimeo series 2080, North Carolina State University

  • Fan J, Gijbels I, King M (1997) Local likelihood and local partial likelihood in hazard regression. Ann Stat 25(4):1661–1690

    Article  MathSciNet  MATH  Google Scholar 

  • Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94(446):496–509

    Article  MathSciNet  MATH  Google Scholar 

  • Gaynor JJ, Feuer EJ, Tan CC, Wu DH, Brennan MF (1993) On the use of cause-specific failure and conditional failure probabilities: examples from clinical oncology data. J Am Stat Assoc 88(422):400–409

    Article  MATH  Google Scholar 

  • Geskus RB (2011) Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring. Biometrics 67(1):39–49

    Article  MathSciNet  MATH  Google Scholar 

  • Gray RJ (1988) A class of k-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 16(3):1141–1154

    Article  MathSciNet  MATH  Google Scholar 

  • Gray RJ (1992) Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. J Am Stat Assoc 87(420):942–951

    Article  Google Scholar 

  • Härdle W (1990) Applied nonparametric regression, vol 19. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    MATH  Google Scholar 

  • Hastie T, Tibshirani R (1993) Varying coefficient models (with discussion). J R Stat Soc Ser B Methodol 55(4):757–796

    MATH  Google Scholar 

  • Hoover DR, Rice JA, Wu CO, Yang LP (1998) Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85(4):809–822

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2011) The statistical analysis of failure time data, 2nd edn. Wiley, London

    MATH  Google Scholar 

  • Lau B, Cole SR, Gange SJ (2009) Competing risk regression models for epidemiologic data. Am J Epidemiol 170(2):244–256

    Article  Google Scholar 

  • Lin H, Fei Z, Li Y (2016a) A semiparametrically efficient estimator of the time-varying effects for survival data with time-dependent treatment. Scand J Stat 43(3):649–663

    Article  MathSciNet  MATH  Google Scholar 

  • Lin H, He Y, Huang J (2016b) A global partial likelihood estimation in the additive cox proportional hazards model. J Stat Plan Inference 169:71–87

    Article  MathSciNet  MATH  Google Scholar 

  • Peng L, Huang Y (2007) Survival analysis with temporal covariate effects. Biometrika 94(3):719–733

    Article  MathSciNet  MATH  Google Scholar 

  • Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy NT, Breslow NE (1979) The analysis of failure times in the presence of competing risks. Biometrics 34(4):541–554

    Article  MATH  Google Scholar 

  • Putter H, Fiocco M, Geskus RB (2007) Competing risks and multi-state models. Stat Med 26(11):2389–2430

    Article  MathSciNet  Google Scholar 

  • Ren X, Li S, Shen C, Yu Z (2018) Linear and nonlinear variable selection in competing risks data. Stat Med 37(13):2134–2147

    Article  MathSciNet  Google Scholar 

  • Rice JA, Silverman BW (1991) Estimating the mean and covariance structure nonparametrically when the data are curves. J R Stat Soc Ser B Methodol 53(1):233–243

    MathSciNet  MATH  Google Scholar 

  • Schulgen G, Olschewski M, Krane V, Wanner C, Ruf G, Schumacher M (2005) Sample sizes for clinical trials with time-to-event endpoints and competing risks. Contemp Clin Trials 26(3):386–396

    Article  Google Scholar 

  • Sun L, Zhu L, Sun J (2009) Regression analysis of multivariate recurrent event data with time-varying covariate effects. J Multivar Anal 100(10):2214–2223

    Article  MathSciNet  MATH  Google Scholar 

  • Sun L, Song X, Zhang Z (2011) Mean residual life models with time-dependent coefficients under right censoring. Biometrika 99(1):185–197

    Article  MathSciNet  MATH  Google Scholar 

  • Tian L, Zucker D, Wei LJ (2005) On the cox model with time-varying regression coefficients. J Am Stat Assoc 100(469):172–183

    Article  MathSciNet  MATH  Google Scholar 

  • Verweij PJM, Van Houwelingen HC (1993) Cross-validation in survival analysis. Stat Med 12(24):2305–2314

    Article  Google Scholar 

  • Wanner C, Krane V, März W, Olschewski M, Mann JF, Ruf G, Ritz E (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353(3):238–248

    Article  Google Scholar 

  • Yu Z, Lin X (2010) Seminparametric regression with time-dependent coefficents for failure time data analysis. Stat Sin 20(2):853–869

    Google Scholar 

  • Yu Z, Liu L, Bravata DM, Williams LS (2014) Joint model of recurrent events and a terminal event with time-varying coefficients. Biom J 56(2):183–197

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao X, Zhou J, Sun L (2010) Semiparametric transformation models with time-varying coefficients for recurrent and terminal events. Biometrics 67(2):404–414

    Article  MathSciNet  MATH  Google Scholar 

  • Zucker D, Karr A (1990) Nonparametric survival analysis with time-dependent covariate effects: a penalized partial likelihood approach. Ann Stat 18(1):329–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (12171318), by the Shanghai Commission of Science and Technology (21ZR1436300), by the 3-year plan of Shanghai public health system construction (GWV-10.1-XK05), and also by Shanghai Jiao Tong University STAR Grant (20190102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangsheng Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A cross-validation score

A cross-validation score

In this appendix A, we first construct the log-likelihood of the ith subject. For failure type \(j=1,\dots ,m\), omitting the n in the log-likelihood formula (2), we can obtain the local partial log-likelihood as follows:

$$\begin{aligned}&l_j(b_j)=\sum _{i=1}^n\int _0^\tau K_h(u-t)\left\{ \widetilde{Z}_i(u,t)^Tb_j-\log \left[ \sum _{l=1}^nY_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) \right] \right\} \nonumber \\&\quad dN_{ji}(u),~j=1,\dots ,m. \end{aligned}$$
(10)

It is equivalent to the local partial log-likelihood defined in (2). Similarly, when the ith subject is left out, the local partial log-likelihood can be written as

$$\begin{aligned}&l_j^{(-i)}(b_j)=\sum _{s\ne i}\int _0^\tau K_h(u-t)\left\{ \widetilde{Z}_s(u,t)^Tb_j-\log \left[ \sum _{l\ne i}Y_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) \right] \right\} \nonumber \\&\quad dN_{js}(u),~j=1,\dots ,m. \end{aligned}$$
(11)

From (10) and (11) yields the contribution of individual i to the likelihood

$$\begin{aligned} l^i_j(b_j)= & {} l_j(b_j)-l^{(-i)}_j(b_j)\nonumber \\= & {} \int _0^\tau K_h(u-t)\left\{ \widetilde{Z}_i(u,t)^Tb_j-\log \left[ \sum _{l=1}^nY_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) \right] \right\} dN_{ji}(u)\nonumber \\&+\sum _{s\ne i}\int _0^\tau K_h(u-t)\log \left[ \frac{\sum _{l\ne i}Y_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) }{\sum _{l=1}^nY_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) }\right]\,\,dN_{js}(u),~j=1,\dots ,m. \nonumber \end{aligned}$$

For the second term on the right-hand side, the term

$$\begin{aligned}&\log \left[ \frac{\sum _{l\ne i}Y_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) }{\sum _{l=1}^nY_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) }\right] \nonumber \\&\quad =\log \left[ 1-\frac{Y_i(u)\exp \left( \widetilde{Z}_i(u,t)^Tb_j\right) }{\sum _{l=1}^nY_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) }\right] \approx 0,~j=1,\dots ,m. \end{aligned}$$

Therefore, for failure type \(j=1,\dots ,m\), we derive an alternative expression for \(l_j^i(b_j)\) by

$$\begin{aligned}&l_j^i(b_j)=\int _0^\tau K_h(u-t)\left\{ \widetilde{Z}_i(u,t)^Tb_j-\log \left[ \sum _{l=1}^nY_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) \right] \right\} \nonumber \\&\quad dN_{ji}(u),~j=1,\dots ,m.\nonumber \end{aligned}$$

It is equivalent to the likelihood as follows:

$$\begin{aligned}&l_j^i(b_j)=\frac{1}{n}\int _0^\tau K_h(u-t)\left\{ \widetilde{Z}_i(u,t)^Tb_j-\log \left[ \sum _{l=1}^nY_l(u)\exp \left( \widetilde{Z}_l(u,t)^Tb_j\right) \right] \right\} \nonumber \\&\quad dN_{ji}(u),~j=1,\dots ,m. \end{aligned}$$
(12)

Next, we give the derived process of the approximations for \(\widehat{\mathbf {b}}^{(-i)}_{j}\) and the cross-validated score \(CV_s(h)\). For failure type \(j=1,\dots ,m\), we apply a Taylor expansion to approximate \(\widehat{\mathbf {b}}^{(-i)}_{j}\). From (6), we have \(l^{(-i)}_j(b_j)=l_j(b_j)-l^i_j(b_j),\) taking the derivative of both sides of this equation with respect to \(b_j\)

$$\begin{aligned} \frac{\partial l^{(-i)}_j}{\partial b_j}(b_{j})= & {} \frac{\partial l_j}{\partial b_j}(b_j)-\frac{\partial l^i_j}{\partial b_j}(b_j),~j=1,\dots ,m, \end{aligned}$$
(13)
$$\begin{aligned} \frac{\partial ^2 l^{(-i)}_j}{\partial b_j^2}(b_{j})= & {} \frac{\partial ^2 l_j}{\partial b_j^2}(b_{j})-\frac{\partial ^2 l^i_j}{\partial b_j^2}(b_{j}),~j=1,\dots ,m, \end{aligned}$$
(14)

at \(b_j=\widehat{\mathbf {b}}_j\), using first-order Taylor expansion to approximate

$$\begin{aligned} \frac{\partial l^{(-i)}_j}{\partial b_j}(b_{j})= & {} \frac{\partial l^{(-i)}_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})+\frac{\partial ^2 l_j^{(-i)}}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})(b_j-\widehat{\mathbf {b}}_{j}),~j=1,\dots ,m.\nonumber \end{aligned}$$

Combining \( \frac{\partial l^{(-i)}_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})=\frac{\partial l_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})-\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\), \(\frac{\partial l_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})=0\), and substituting \(\widehat{\mathbf {b}}_{j}^{(-i)}\) for \(b_j\) in the above formula, we have

$$\begin{aligned}&0=\frac{\partial l^{(-i)}_j}{\partial b_j}\left( \widehat{\mathbf {b}}_{j}^{(-i)}\right) = -\frac{\partial l^{i}_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})+\frac{\partial ^2 l_j^{(-i)}}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\left( \widehat{\mathbf {b}}_{j}^{(-i)}-\widehat{\mathbf {b}}_{j}\right) ,~j=1,\dots ,m.\nonumber \end{aligned}$$

Solving the above equation with respect to \(\widehat{\mathbf {b}}^{(-i)}_{j}\), we infer

$$\begin{aligned} \widehat{\mathbf {b}}^{(-i)}_{j}\,\,= \,\,& {} \widehat{\mathbf {b}}_{j}+\left\{ \frac{\partial ^2 l_j^{(-i)}}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\right\} ^{-1}\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j}),~j=1,\dots ,m. \end{aligned}$$
(15)

Substituting \(\widehat{\mathbf {b}}_{j}\) for \(b_j\) in (14), and combined with (15), for failure type \(j=1,\dots ,m\), we establish the approximations for \(\widehat{\mathbf {b}}^{(-i)}_{j}\) as

$$\begin{aligned} \widehat{\mathbf {b}}^{(-i)}_{j}\,\,=\,\, & {} \widehat{\mathbf {b}}_{j}+\left\{ \frac{\partial ^2 l_j}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\right\} ^{-1}\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j}),~j=1,\dots ,m, \end{aligned}$$
(16)

where we ignore the second derivation of \(l_j^i(b_j)\) because its calculation will consume much computer storage and time, and the approximation of the estimator \(\widehat{\mathbf {b}}^{(-i)}_{j}\) is the function of \(\widehat{\mathbf {b}}_{j}\).

Then we are going to approximate the cross-validated score \(CV_s(h)=\sum _{i=1}^n l^i_j\left( \widehat{\mathbf {b}}^{(-i)}_{j}\right) \) for failure type \(j=1,\dots ,m\). Associating with (12) and (16), for \(l_j^i(b_j)\) using a first-order Taylor approximation, we obtain

$$\begin{aligned} l_j^i\left( \widehat{\mathbf {b}}_{j}^{(-i)}\right)\,=\, & {} l_j^i\left( \widehat{\mathbf {b}}_{j}+\left\{ \frac{\partial ^2 l_j}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\right\} ^{-1}\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\right) \nonumber \\ \,=\, & {} l_j^i(\widehat{\mathbf {b}}_{j})+\left\{ \frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\right\} ^T\left[ \widehat{\mathbf {b}}_{j}+\left\{ \frac{\partial ^2 l_j}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\right\} ^{-1}\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})-\widehat{\mathbf {b}}_{j}\right] \nonumber \\ \,=\, & {} l_j^i(\widehat{\mathbf {b}}_{j})+\left\{ \frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\right\} ^T\left\{ \frac{\partial ^2 l_j}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\right\} ^{-1}\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\nonumber \\\,=\, & {} l_j^i(\widehat{\mathbf {b}}_{j})+tr\left[ \left\{ \frac{\partial ^2 l_j}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\right\} ^{-1}\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\left\{ \frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\right\} ^T\right] ,~j=1,\dots ,m, \end{aligned}$$
(17)

where for the first term of the right-hand side, using a Taylor expansion at \(\widehat{\mathbf {b}}_{j}^{(-i)}=\widehat{\mathbf {b}}_{j}\), and for the third term of the right-hand side, utilizing the trace’s basic properties. Then, from (17), we establish the approximation of \(CV_s\) for failure type \(j=1,\dots ,m\)

$$\begin{aligned} CV_s(h)= & {} \sum _{i=1}^{n}l_j^i(\widehat{\mathbf {b}}_{j})+tr\,\,\left[ \left\{ \frac{\partial ^2 l_j}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\right\} ^{-1}\sum _{i=1}^{n}\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\left\{ \frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\right\} ^T\right] \nonumber \\ \,=\, & {} l_j(\widehat{\mathbf {b}}_{j})+tr\,\,\left[ \left\{ \frac{\partial ^2 l_j}{\partial b^2_j}(\widehat{\mathbf {b}}_{j})\right\} ^{-1}\sum _{i=1}^{n}\frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\left\{ \frac{\partial l^i_j}{\partial b_j}(\widehat{\mathbf {b}}_{j})\right\} ^T\right] ,~j=1,\dots ,m.\nonumber \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Yu, Z. Kernel regression for cause-specific hazard models with time-dependent coefficients. Comput Stat 38, 263–283 (2023). https://doi.org/10.1007/s00180-022-01227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-022-01227-2

Keywords